Kmeans算法实现目标客户聚类分析【2维特征】

本文介绍了Kmeans聚类算法的基本原理,包括算法的优势和局限性,如简单实用但K值难以确定。接着,文章描述了一个包含客户ID、性别、年龄、年收入和消费等级分数的数据集,探讨了如何使用Kmeans进行客户分类。尽管Kmeans可能对异形簇聚类效果不佳且分类结果不稳定,但它仍然是数据分析中的一个重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、Kmeans简介

Kmeans是聚类算法中较为简单的一种,简单但实用,有如下优势和缺点:

  • 优势

    1. 算法简单,便于使用(算法仅需要考虑一个分类数量K即可)

    2. 适合常规数据集(最好是线性可分的数据集)

      适合
      不适合
  • 缺点

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

什么都干的派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值