数学建模学习笔记(二):图论

仅对部分与数学建模相关且陌生的问题进行学习和整理。

一、网络最大流问题
1. 线性规划模型
最大流问题可以写为如下的线性规划模型:
max\quad v(f),\quad s.t.\left\{\begin{matrix} \sum_{j:(v_i,v_j)\in A}f_{ij}-\sum_{j:(v_j,v_i)\in A}f_{ji}=\left\{\begin{matrix} v(f),i=s\\ -v(f),i=t,\\ 0,i\neq s,t \end{matrix}\right.\\ 0\leqslant f_{ij}\leqslant c_{ij},\forall (v_i,v_j)\in A \end{matrix}\right. \quad(1)

2. 寻找最大流的标号法(Ford-Fulkerson)

(1)标号过程 (2)增流过程     (代码实现-Lingo)

二、最小费用最大流问题

1. 线性规划模型

min\quad\sum_{(v_i,v_j)\in A}b_{ij}f_{ij},\quad s.t.\left\{\begin{matrix} 0\leq f_{ij}\leq c_{ij}, \forall (v_i,v_j)\in A,\\ \sum_{j:(v_i,v_j)\in A}f_{ij}-\sum_{j:(v_j,v_i)\in A}f_{ji}=d_i \end{matrix}\right.\quad (2)     

其中,    \\ d_{i}=\left\{\begin{matrix} v(f_{max}),i=s\\ -v(f_{max}),i=t,\\ 0,i\neq s,t \end{matrix}\right.

2. 求最小费用流的一种迭代方法

(1)求出从发点到收点的最小费用通路\mu (s,t)

(2)对该通路\mu (s,t)分配最大可能的流量:    \bar{f}=min_{(v_i,v_j)\in \mu (s,t)}\{c_{ij}\}

(3)作该通路\mu (s,t)上所有边(v_i,v_j)的反向边(v_j,v_i),令 c_{ji}=\bar{f}, b_{ji}=-b_{ij}

(4)重复上述步骤,直到发点和收点的全部流量等于指定的v(f)为止

三、旅行商问题(TSP)

一名推销员准备前往若干城市推销产品,然后回到驻地。如何为他设计一条最短的旅行路线(从驻地出发,每个城市恰好经过一次,最后返回驻地)?

1. 修改圈近似算法

  首先求一个Hamilton圈C,然后适当修改C以得到具有较小权的另一个Hamilton圈。

2. 数学规划模型

  设城市的个数为n,两个城市ij之间的距离为d_{ij}x_{ij}=0或1(走过城市i到城市j的路与否)

    min \sum_{i\neq j}d_{ij}x_{ij},\\ s.t.\left\{\begin{matrix} \sum_{j=1}^nx_{ij}=1,i=1,2,...,n,\\ \sum_{i=1}^nx_{ij}=1,j=1,2,...,n,\\ \sum_{i,j\in s}x_{ij}\leq \left | s \right |-1,2\leq \left | s \right |\leq n-1,s\subset \{1,2,...,n\}\\ x_{ij}\in {0,1},i,j=1,2,...,n,i\neq j \end{matrix}\right.\quad (3)

四、计划评审方法(PERT)和关键路线法(CPM)

PERT和CPM是网络分析的重要组成部分,广泛用于系统分析和项目管理。

1. 计划网络图的数学规划问题

min \sum_{i\in V}x_i, \quad \quad s.t.\left\{\begin{matrix} x_j\geq x_i+t_{ij},(i,j)\in A,i,j\in V\\ x_i\geq 0,i\in V \end{matrix}\right. \quad (4)   V: 所有的事件集合 A: 所有作业的集合

2. 关键路线与计划网络的优化

(1)计划网络优化的数学表达式

min \sum_{(I,j)\in A}c_{ij}y_{ij}, \quad s.t.\left\{\begin{matrix} x_j-x_i+y_{ij}\geq t_{ij},(i,j)\in A,i,j\in V\\ x_n-x_1\leq d\\ 0\leq y_{ij}\leq t_{ij}-m_{ij},(i,j)\in A,i,j\in V \end{matrix}\right.

x_{i}: 事件i的开始时间  t_{ij}: 作业(i,j)的计划时间  m_{ij}: 完成作业(i,j)的最短时间  d: 要求完成的天数

 y_{ij}: 作业(i,j)可能减少的时间   c_{ij}: 作业(i,j)缩短一天工期增加的费用

(2)完成作业期望和实现事件的概率

通常,对完成一项作业可以给出三个时间上的估计值:最乐观的估计值(a),最悲观的估计值(b),最可能的估计值(m)

t_{ij}: 完成作业(i,j)的实际时间,相应的数学期望和方差为:

E(t_{ij})=\frac{a_{ij}+4m_{ij}+b_{ij}}{6},\quad(4) \quad Var(t_{ij})=\frac{(b_{ij}-a_{ij})^2}{36},\quad (5)

五、钢管订购和运输

要铺设一条输送天然气的主管道,请制定一个主管道钢管的订购和运输计划,使总费用最小。

数学规划模型:

min \sum_{i=1}^{7}\sum_{j=1}^{15}c_{ij}x_{ij}+\frac{0.1}{2}\sum_{j=1}^{15}[z_j(z_j+1)+y_j(y_j+1)],\\ s.t.\left\{\begin{matrix} \sum_{j=1}^{15}x_{ij}\in \{0\}\cup [500,s_i],i=1,2,...,7\\ \sum_{i=1}^{7}x_{ij}=z_j+y_j,j=1,2,...,15\\ y_{j+1}+z_j=l_j,j=1,2,...,14\\ x_{ij}\geq 0,z_j\geq 0,y_j\geq0,i=1,2,...,7,j=1,2,...,15\\ y_1=0,z_{15}=0 \end{matrix}\right. \quad (6)

c_{ij}: 从生产商S_iA_j的最小购运费(出售价与运输费之和)x_{ij}: 从钢厂S_i运到节点j的钢管量

y_j: 从节点j向左铺设的钢管量   z_j: 从节点j向右铺设的钢管量  s_i: 第i家钢厂的最大供应量

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值