- 博客(6)
- 收藏
- 关注
原创 利用pywt库对信号进行滤波,保留中心频段信号
在处理复杂信号时,由于采样的频带较宽,频散现象较为严重,多频下波速的不同很容易对信号的判断造成干扰,甚至造成误判的结果,为避免这样的结果,可以通过小波变换的方式对信号进行分解,把信号分解为从高频到低频依次递减的频率分布。选择频散现象不明显或者信号易于区分的部分作为主分析信号,做之后的进一步处理。上图为进行三层分解的结果示意图。因此在对原始数据进行四层分解时,C中的数据应为:cA4 cD4 cD3 cD2 cD1,其中cA为信号的近似分量为低频,cD为信号的细节分量为高频。而L中的结果就是每个数据的长度。
2023-09-14 11:17:38 315 2
原创 利用tensorflow.keras创建四层神经网络并绘制loss和accuracy曲线,打印和生成神经网络模型图
利用tensorflow.keras创建四层神经网络并绘制loss和accuracy曲线,打印和生成神经网络模型图
2022-10-19 14:24:32 1380
原创 利用VGG16卷积神经网络模型数据做五种图片检测
把文件vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5放入C:\Users\DELL\.keras\models目录下,本文采用VGG16模型训练好的权重和偏置值搭建卷积神经网络,其中没有更改卷积层和池化层模型结构,使用两层神经网络简单识别data目录下的五种图片进行分类。
2021-11-24 16:30:27 1739
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人