1.递归实现指数型枚举
从 1∼n 这 n 个整数中随机选取任意多个,输出所有可能的选择方案。
输入格式
输入一个整数 n。
输出格式
每行输出一种方案。
同一行内的数必须升序排列,相邻两个数用恰好 1 个空格隔开。
对于没有选任何数的方案,输出空行。
本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。
数据范围
1≤n≤15
输入样例:
3
输出样例:
3
2
2 3
1
1 3
1 2
1 2 3
- dfs(int a,int is) 参数a表示枚举了数字a, 参数is表示是否选择该数字a,0表示不选,1表示选。
#include<bits/stdc++.h>
using namespace std;
int n;
vector<int> path;//存储待输出数组
void dfs(int a,int is){
if(a == n){//递归达到末尾.也可以理解为枚举完n个数了
for(int i=0;i<path.size();i++)
cout<<path[i]<<" ";
cout<<endl;
return;
}
path.push_back(a+1);
dfs(a+1,1);//选了数字a+1
path.pop_back();//回溯,剔除path数组里面的数字a+1
dfs(a+1,0);//不选数字a+1
}
int main(){
cin>>n;
path.push_back(1);
dfs(1,1);//选了数字1
path.pop_back();
dfs(1,0);//不选数字1
return 0;
}
2.递归实现排列型枚举
把 1∼n 这 n 个整数排成一行后随机打乱顺序,输出所有可能的次序。
输入格式
一个整数 n。
输出格式
按照从小到大的顺序输出所有方案,每行 1 个。
首先,同一行相邻两个数用一个空格隔开。
其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面。
数据范围
1≤n≤9
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
- dfs(int a) 参数a表示选择了a个数字。
#include<bits/stdc++.h>
using namespace std;
int n;
vector<int> path;
int flag[20];//排列型,循环查找需要标记是否遍历过。
void dfs(int a){
if(a == n){//当选择了n个数字便结束这一轮递归
for(int i=0;i<path.size();i++)
cout<<path[i]<<" ";
cout<<endl;
return;
}
for(int i=1;i<=n;i++){
if(!flag[i]){
flag[i] = 1;//标记已经用过
path.push_back(i);
dfs(a+1);
path.pop_back();//弹出、回溯
flag[i] = 0;//恢复标记、回溯
}
}
}
int main(){
cin>>n;
dfs(0);//刚开始选了0个数字
return 0;
}
3.递归实现组合型枚举
从 1∼n 这 n 个整数中随机选出 m 个,输出所有可能的选择方案。
输入格式
两个整数 n,m ,在同一行用空格隔开。
输出格式
按照从小到大的顺序输出所有方案,每行 1 个。
首先,同一行内的数升序排列,相邻两个数用一个空格隔开。
其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面(例如 1 3 5 7 排在 1 3 6 8 前面)。
数据范围
n>0 ,
0≤m≤n ,
n+(n−m)≤25
输入样例:
5 3
输出样例:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
- dfs(int a,int start) 参数a表示选择了a个数字,参数start表示从数字start开始枚举选择。
思考为何组合型这题不需要标记flag,原因是因为参数start保证了在for里也可以有序递归,比如样例1-5 5个数中选3个数,不会出现3 5 4的情况,只会出现3 4 5这种情况。
#include<bits/stdc++.h>
using namespace std;
const int N = 30;
int n, m;
vector<int> path;
void dfs(int a,int start){
if(a == m ){
for(int i=0;i<path.size();i++)
cout<<path[i]<<" ";
cout<<endl;
return;
}
for(int i=start;i<=n;i++){
path.push_back(i);
dfs(a+1,i+1);//选择了a+1个数,从i+1开始枚举
path.pop_back();//弹出回溯
}
}
int main()
{
cin>>n>>m;
dfs(0,1);
return 0;
}
总结
我认为这三个题型是入门一维dfs的最好题目(二维便是迷宫、岛屿等问题),刚接触dfs的小伙伴可以通过理解这三道递归题目来理解何dfs的思想。
至于dfs函数的参数是如何想到的,为何有时候需要flag进行标记回溯,path保存答案的数组的理解…等等问题,最好可以自己进行debug来模拟整个流程,这三道题的流程并不复杂,很适合初学者进行模拟理解dfs的流程。
熟能生巧,理解越深刻,有了一定经验后,自然也可以触类旁通在不同题目中写出自己的dfs函数了。