题目:
为了不断优化推荐效果,今日头条每天要存储和处理海量数据。假设有这样一种场景:我们对用户按照它们的注册时间先后来标号,对于一类文章,每个用户都有不同的喜好值,我们会想知道某一段时间内注册的用户(标号相连的一批用户)中,有多少用户对这类文章喜好值为kk。因为一些特殊的原因,不会出现一个查询的用户区间完全覆盖另一个查询的用户区间(不存在L1<=L2<=R2<=R1L1<=L2<=R2<=R1
输入描述:
输入: 第1行为n代表用户的个数 第2行为n个整数,第i个代表用户标号为i的用户对某类文章的喜好度 第3行为一个正整数q代表查询的组数 第4行到第(3+q)行,每行包含3个整数l,r,k代表一组查询,即标号为l<=i<=r的用户中对这类文章喜好值为k的用户的个数。 数据范围n <= 300000,q<=300000 k是整型
输出描述:
输出:一共q行,每行一个整数代表喜好值为k的用户的个数
输入例子1:
5
1 2 3 3 5
3
1 2 1
2 4 5
3 5 3
输出例子1:
1
0
2
例子说明1:
样例解释:
有5个用户,喜好值为分别为1、2、3、3、5,
第一组询问对于标号[1,2]的用户喜好值为1的用户的个数是1
第二组询问对于标号[2,4]的用户喜好值为5的用户的个数是0
第三组询问对于标号[3,5]的用户喜好值为3的用户的个数是2
解析
数据很大,询问300000次,那么每次询问对应的操作的时间复杂度必须是O(1)或O(logn);
这就为我们思考算法提供了方向,O(1)显然是不可能的,那么操作的时间复杂度为O(logn)的算法只能是二分查找了,因此,你从这个时间复杂度联想到二分查找,那么这个题你就差不多做出来了;
二分的要求是序列有序,因此不管那么多,先排序,可是按照什么东西来排序呢?由于题目要求在一个时间范围内喜好为k的有多少人,那么可以把相同k值的人放到一起形成一个子序列,然后再根据时间的范围在这个子序列中查找,因此用结构体的二级排序,先按k值的大小升序排序,如果k值相同,再按时间顺序升序排序;
解析参考:https://blog.csdn.net/flushhip/article/details/79416715
源代码(C语言)
// 用户喜好(字节跳动)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define maxSize 30
typedef struct userNode{
int index; // 用户创建的顺序
int key; // 用户的喜好度
}userNode,userArray[maxSize];
// 初始化用户数组
void initUserArray(userNode *userArr, int n){
int k,i;
for(i = 0 ; i < n ; i++){
scanf("%d",&k);
userArr[i].key = k;
userArr[i].index = i + 1;
}
}
// 二级排序
int cmp(const void *a,const void *b){
struct userNode *p1 = (userNode *)a;
struct userNode *p2 = (userNode *)b;
return p1->key != p2->key ? p1->key - p2->key : p1->index - p2->index;
}
// 二分找下界
int binarySort_down(userNode *userArr, int n, int k){
int l,r,mid;
// 找下界
for(l = 0,r = n; l < r ;){
mid = (l + r) / 2;
if(userArr[mid].key >= k){
r = mid;
}else{
l = mid + 1;
}
}
return l;
}
// 二分找上界
int binarySort_up(userNode *userArr, int n, int k){
int l,r,mid;
for(l = -1,r = n - 1; l < r;){
mid = (l + r + 1) / 2;
if(userArr[mid].key <= k){
l = mid;
}else{
r = mid - 1;
}
}
return r;
}
// 查找用户
int searchUser(userNode *userArr,int left,int right,int pre,int last){
int i;
int res = 0;// 最终结果
// 取出当前k值对应的上下界中所有的元素进行比对
for(i = pre; i <= last; i++){
if(userArr[i].index >= left && userArr[i].index <= right){
res++;
}
}
return res;
}
// 输出
void show(userNode *userArr, int n){
int i;
for(i = 0 ; i < n ; i++){
printf("%3d",userArr[i].index);
}
printf("\n");
for(i = 0 ; i < n ; i++){
printf("%3d",userArr[i].key);
}
}
void main(){
userArray userArr; // 结构体数组
int userNum; // 用户数
int g; // 组数
int i,j; // 循环变量
int pre,last; // k的上下界
int res; // 最终查找到的用户数
printf("请输入用户数:");
scanf("%d",&userNum);
memset(userArr,0,sizeof(userArr)); // 初始化用户结构体数组
// 初始化用户喜好度
initUserArray(userArr,userNum);
printf("\n排序前:\n");
show(userArr,userNum);
// 对用户数组进行二级排序
qsort(userArr,userNum,sizeof(userArr[0]),cmp);
printf("\n排序完成后:\n");
show(userArr,userNum);
// 初始化查找数组
printf("\n请输入组数:");
scanf("%d",&g);
int group[maxSize][3];
for(i = 0 ; i < g ; i++){
for(j = 0 ; j < 3 ; j++){
scanf("%d",&group[i][j]);
}
}
// 开始查看
for(i = 0 ; i < g ; i++){
// 根据二分找下界 和 上界
pre = binarySort_down(userArr,userNum,group[i][2]);
last = binarySort_up(userArr,userNum,group[i][2]);
// 查找用户
res = searchUser(userArr,group[i][0],group[i][1],pre,last);
printf("\n共有%d个用户",res);
}
printf("\n");
}