用三分法求非单调函数的极值

本文介绍如何运用三分法寻找0到100区间内非单调函数F(x) = 6 * x^7 + 8 * x^6 + 7 * x^3 + 5 * x^2 - y * x的最小值。由于二分法不适用于非单调函数,因此采用三分法,根据函数的凸凹性调整搜索区间,直至区间足够小以找到极值点。在凸函数中,若m2 > m1,则认为m2更接近极值点;反之,若m1 > m2,m1更接近极值点。在凹函数中,情况恰好相反。这种方法可以解决导数单调时无法直接用二分法求极值的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在,有一个函数:F(x)= 6 ∗ * x 7 + 8 ∗ x 6 + 7 ∗ x 3 + 5 ∗ x 2 − y ∗ x ^ 7+8*x ^ 6 + 7 * x ^ 3 + 5 * x ^ 2-y * x 7+8x6+7x3+5x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值