参考教程《离散数学教程》
基本定义一:
无向树(T): 连通且无回路的无向图;
森林: 每个连通分支都是树的无向图;
树叶v:d(v)=1;
分枝点v: d(v)≥2;
平凡树:平凡图,既无树叶,也无分支点;
定理 9.1 设 G = <V,E> 为 n 阶 m 条边的无向图,则下面各命题是等价的:
(1) G 是树(连通无回路);
(2) G 中任二顶点之间存在惟一的一条路径;
(3) G 中没有圈,且 m = n − 1;
(4) G 是连通的,且 m = n − 1;
(5) G 是连通的,且 G 中任何边均为桥;
(6) G 中没有圈,但在 G 中任二不同顶点 u, v 之间增添边 (u, v),所得图含惟一的一个圈.
定理 9.2 设 T 是 n 阶非平凡的无向树,则 T 至少有两个片树叶。
定理 9.3 无向图 G 具有生成树当且仅当 G 是连通的.
推论 1 设 G 为 n 阶 m 条边的无向连通图,则 m ≥ n − 1.
推论 2 设 T 是 n 阶 m 条边的无向连通图 G 的一棵生成树,则 T 的余树 ╤ 中含 m − n + 1 条边.
推论 3 设 T 是连通图 G 的一棵生成树,╤为 T 的余树,C 为 G 中任意一圈,则 E(╤)∩E© ≠ ∅.
定义二:
定理 9.4 设 T 是无向连通图 G 中的一棵生成树,e 为 T 的任意一条弦,则 T ∪ e 中含 G 的只含
一条弦,其余边均为树枝的圈,而且不同的弦对应的圈是不同的.
定理 9.5 设 T 是连通图 G 的一棵生成树,e 为 T 的一条树枝,则 G 中存在只含树枝 e,其余元
素均为弦的割集. 设 e1, e2 是 T 的不同的树枝,则它们对应的只含一条树枝的割集是不同的.
定义三:
定理 9.6 设 G = <V,E>为 n 阶无向连通标定图( V = {v1, v2, · · · , vn} ),则对 G 的任意非环边 e
均有 τ (G) = τ (G − e) + τ (G\e).
定理 9.7 τ (Kn) = n^(n-2)(n ≥ 2),其中 Kn 为 n 阶标定完全图.