题目描述
一只青蛙,想要捕食距离它M米处的一只昆虫。
已知青蛙的蛙跳范围为[1, N]之间,单位米(每次蛙跳距离为整数,即[1,N]之间的整数)。青蛙在0的位置,求青蛙跳到M的位置吃到昆虫的方案数。
输入
测试实例包括T组测试数据。(T <= 100)
每组测试数据为两个数字M和N,分别代表青蛙距离昆虫的距离以及蛙跳的最远距离。(0 <= M <= 1000, 0 < N <= 100)
输出
对于每组测试数据,输出青蛙吃到昆虫的方案数。数据过大,结果对1e9+7取余。
样例输入 Copy
2
5 1
5 2
样例输出 Copy
1
8
跟那个一步两步上楼梯的题一样,只是走的步数变为了1~n,即某一位置可以由前n个位置达到
例如第二组数据5 2 dp[2]表示第二个位置,第二个位置可以由最开始的位置dp[0]+2,或者前一个位置dp[1]+1得到
同理可以推出其他步数的情况
#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
int dp[1010];
int main(){
int t, m, n;
cin >> t;
while (t--){
cin >> m >> n;
memset(dp, 0, sizeof(dp));
dp[0] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n&&i - j >= 0; j++) //dp[i]表示到达当前位置最多的方案数
dp[i] += dp[i - j], dp[i] %= mod;
cout << dp[m] << endl;
}
return 0;
}