数据结构回顾
回顾一下目前为止掌握的学过的数据结构。
线性结构:数组、链表、栈、队列、哈希表
树形结构:二叉树、B树、堆、Trie、哈夫曼树、并查集
图是不属于以上两类的数据结构。
图(Graph)
图由顶点(vertex)和边(edge)组成,通常表示为 G = (V, E)
- G 表示一个图,V 是顶点集,E 是边集
- 顶点集 V 有穷且非空
- 任意两个顶点之间都可以用边来表示它们之间的关系,边集 E 可以为空
以下都属于图。
图结构的应用极其广泛:
- 社交网络
- 地图导航
- 游戏开发
- …
有向图(Directed Graph)
有向图的边是有明确方向的:
有向无环图(Directed Acyclic Graph,简称 DAG)
- 如果一个有向图,从任意顶点出发无法经过若干条边回到该顶点,那么它就是一个有向无环图
出度、入度
出度、入度适用于有向图
出度(Out-degree)
- 一个顶点的出度为 x,是指有 x 条边以该顶点为起点
- 顶点 11 的出度是 3
入度(In-degree)
- 一个顶点的入度为 x,是指有 x 条边以该顶点为终点
- 顶点 11 的入度是 2
无向图(Undirected Graph)
无向图的边是无方向的
无向图可以通过有向图表示出来,但是有向图无法通过无向图来表示。
下面这个有向图就相当于上面的无向图。
混合图(Mixed Graph)
混合图的边可能是无向的,也可能是有向的。
简单图、多重图
平行边
- 在无向图中,关联一对顶点的无向边如果多于1条,则称这些边为平行边
- 在有向图中,关联一对顶点的有向边如果多于1条,并且它们的的方向相同,则称这些边为平行边
多重图(Multigraph)
- 有平行边或者有自环的图
简单图(Simple Graph)
- 既没有平行边也不没有自环的图
- 课程中讨论的基本都是简单图
无向完全图(Undirected Complete Graph)
无向完全图的任意两个顶点之间都存在边
- n 个顶点的无向完全图有 n(n − 1) / 2 条边
- (n − 1) + (n − 2) + (n − 3) + ⋯ + 3 + 2 + 1
有向完全图(Directed Complete Graph)
有向完全图的任意两个顶点之间都存在方向相反的两条边
- n 个顶点的有向完全图有 n(n − 1) 条边
稠密图(Dense Graph):边数接近于或等于完全图
稀疏图(Sparse Graph):边数远远少于完全图
有权图(Weighted Graph)
有权图的边可以拥有权值(Weight)
连通图(Connected Graph)
如果顶点 x 和 y 之间存在可相互抵达的路径(直接或间接的路径),则称 x 和 y 是连通的
如果无向图 G 中任意 2 个顶点都是连通的,则称G为连通图
连通分量(Connected Component)
连通分量:无向图的极大连通子图
- 连通图只有一个连通分量,即其自身
- 非连通的无向图有多个连通分量
下面的无向图有 3 个连通分量:
强连通图(Strongly Connected Graph)
如果有向图 G 中任意2个顶点都是连通的,则称G为强连通图
强连通分量(Strongly Connected Component)
强连通分量:有向图的极大强连通子图
- 强连通图只有一个强连通分量,即其自身;非强连通的有向图有多个强连通分量
图的实现方案
图有2种常见的实现方案:
- 邻接矩阵(Adjacency Matrix)
- 邻接表(Adjacency List)
邻接矩阵(Adjacency Matrix)
邻接矩阵的存储方式
- 一维数组存放顶点信息
- 二维数组存放边信息
邻接矩阵比较适合稠密图
- 不然会比较浪费内存
邻接矩阵 – 有权图
邻接表(Adjacency List)