- 博客(7)
- 收藏
- 关注
翻译 MNIST手写数字识别进阶:多层神经网络及应用(1)
# 一、载入数据 import tensorflow as tf import numpy as np #导入tensorflow提供的读取MNIST的模块 import tensorflow.examples.tutorials.mnist.input_data as input_data #读取MNIST数据 mnist = input_data.read_data_sets("MNIST_...
2019-01-31 17:35:18 494
翻译 Tensorflow之MNIST手写数字识别:分类问题(2)
整体代码: #数据读取 import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/",one_ho...
2019-01-31 17:34:07 213
翻译 Tensorflow之MNIST手写数字识别:分类问题(1)
一、MNIST数据集读取 one hot 独热编码 独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符 优点: 1、将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点 2、机器学习算法中,特征之间距离的计算或相似度的常用计算方法都是基于欧式空间的 3、将离散型特征使用one_hot编码,会让...
2019-01-31 17:32:18 599
翻译 Tensorflow之多元线性回归问题(以波士顿房价预测为例)
一、根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd ...
2019-01-31 17:22:56 1365 1
翻译 Tensorflow之单变量线性回归问题的解决方法
跟着网易云课堂上面的免费公开课深度学习应用开发Tensorflow实践学习,学到线性回归这里感觉有很多需要总结,梳理记录下阶段性学习内容。 题目:通过生成人工数据集合,基于TensorFlow实现y=2*x+1线性回归 使用Tensorflow进行算法设计与训练的核心步骤 (1)准备数据 (2)构建模型 (3)训练模型 (4)进行预测 #线性回归问题 #******************一、准...
2019-01-31 17:19:53 342
翻译 Tensorflow之变量赋值输出1+2+3+4+5+6+7+8+...
一、导入tensorflow import tensorflow as tf 二、定义计算图 (1)常量初始化 constant_name = tf.constant(value) (2)变量初始化 创建变量: name_variable = tf.Variable(value,name) 个别变量初始化: init_op = name_variable.initializer() 所有变量初始化...
2019-01-31 17:17:32 1404
翻译 Tensorflow基础
最近在跟着网易云课堂学习tensorflow,感觉知识点很多,特地梳理一遍。 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理...
2019-01-31 17:07:03 136
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人