单例模式学习笔记

今天的学习jquery组件开发时候例子使用了单例模式,所以总结了一些相关知识。在这里插入图片描述


单例模式介绍

首先什么是单例模式?可以这样理解:单例模式旨在保证一个类仅有一个实例,并提供一个全局的访问点。
可能有人还是不太理解单例的概念,那么你可以想象生活中的一些例子。比如注册账号的时候,如果我们注册的账号已经存在,那么系统会提示我们“账号已经存在是否使用该账号登陆”,我们无法再次创建一个一模一样的账号,除非把原账号注销。这就是单例模式的生动体现。

单例模式的思路

一个类能返回一个对象的引用(并且永远是同一个)和一个获得该实例的方法(静态方法,通常使用 getInstance 名称)。那么当我们调用这个方法时,如果类持有的引用不为空就返回该引用,否者就创建该类的实例,并且将实例引用赋值给该类保持的那个引用再返回。同时将该类的构造函数定义为私有方法,避免其他函数使用该构造函数来实例化对象,只通过该类的静态方法来得到该类的唯一实例。

介绍

  • 意图:保证一个类仅有一个实例,并提供一个访问它的全局访问点。
  • 主要解决:一个全局使用的类频繁地创建与销毁。
  • 何时使用:当您想控制实例数目,节省系统资源的时候。
  • 如何解决:判断系统是否已经有这个单例,如果有则返回,如果没有则创建。
  • 关键代码:构造函数是私有的。
  • 应用实例: 1、一个党只能有一个书记。 2、Windows 是多进程多线程的,在操作一个文件的时候,就不可避免地出现多个进程或线程同时操作一个文件的现象,所以所有文件的处理必须通过唯一的实例来进行。 3、一些设备管理器常常设计为单例模式,比如一个电脑有两台打印机,在输出的时候就要处理不能两台打印机打印同一个文件。
  • 优点: 1、在内存里只有一个实例,减少了内存的开销,尤其是频繁的创建和销毁实例(比如管理学院首页页面缓存)。 2、避免对资源的多重占用(比如写文件操作)。
  • 缺点:没有接口,不能继承,与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心外面怎么样来实例化。
  • 使用场景: 1、要求生产唯一序列号。 2、WEB 中的计数器,不用每次刷新都在数据库里加一次,用单例先缓存起来。 3、创建的一个对象需要消耗的资源过多,比如 I/O 与数据库的连接等。
  • 注意事项:getInstance() 方法中需要使用同步锁 synchronized (Singleton.class) 防止多线程同时进入造成 instance 被多次实例化。

命名空间

例如jQuery库的命名空间为jQuery或$。命名空间的使用是为了让代码更加整洁,在多人协作开发的情况下,不同的人定义的变量很有可能重复,此时就需要使用命名空间来约束每个人定义的变量,使相同名称的变量放在不同的命名空间中,避免相互干扰。

// A程序员的命名空间
var A = {
  get: function(id){
    return document.getElementById(id);
  }
  css: function(id,key,value){
    get(id).style[key] = value;
  }
}
// B程序员的命名空间
var B = {
  get: function(className){
    return document.getElementByClassName(className)[0];
  }
  css: function(className,key,value){
    get(className).style[key] = value;
  }
}

A、 B两个命名空间中都有一个get方法和一个css方法,用于元素获取和元素样式修改,不同的是A是通过id来获取元素,而B是通过class来获取元素,通过命名空间,可以使这些相同名称的方法共存,使用时指定相应的命名空间即可。

常量

JavaScript中并没有final、static这类关键字用来定义常量,但JavaScript非常灵活,通过常量只能访问不能修改这一特点,我们可以将变量保存在函数内部,并且只提供获取变量的方法,不提供设置变量的方法,通过闭包的方式使函数执行一次并返回相应的访问方法对象,最后将这个对象放在全局空间中作为常量单例对象使用。例如:

var Color = (function(){
  // 私有变量
  var color = {
    'RED': '#ff0000',
    'YELLOW': '#ffff00',
    'BLUE': '#0000ff'
  }
  // 返回访问方法对象
  return {
    // 常量获取方法
    get: function(name){
      return color[name] ? color[name] : null;
    }
  }
})();
 
var color = Color.get('BLUE');
console.log(color);  // #0000ff

实现方式

实现1: 最简单的对象字面量
var singleton = {
        attr : 1,
        method : function(){ return this.attr; }
    }
var t1 = singleton ;
var t2 = singleton ;
    那么很显然的, t1 === t2 。
 

十分简单,并且非常使用,不足之处在于没有什么封装性,所有的属性方法都是暴露的。对于一些需要使用私有变量的情况就显得心有余而力不足了。当然在对于 this 的问题上也是有一定弊端的。

实现2:构造函数内部判断

其实和最初的JS实现有点类似,不过是将对是否已经存在该类的实例的判断放入构造函数内部。

function Construct(){
    // 确保只有单例
    if( Construct.unique !== undefined ){
        return Construct.unique; 
    }
    // 其他代码
    this.name = "NYF";
    this.age="24";
    Construct.unique = this;
}
var t1 = new Construct() ;
var t2 = new Construct() ;
    那么也有的, t1 === t2 。

也是非常简单,无非就是提出一个属性来做判断,但是该方式也没有安全性,一旦我在外部修改了Construct的unique属性,那么单例模式也就被破坏了。

实现3 : 闭包方式
var single = (function(){
    var unique;
    function Construct(){
        // ... 生成单例的构造函数的代码
    }
    unique = new Constuct();
    return unique;
})();

只要每次将var t1 = single; var t2 = single;即可。 与对象字面量方式类似。不过相对而言更安全一点,当然也不是绝对安全。
如果希望会用调用 single() 方式来使用,那么也只需要将内部的 return 改为

return function(){
    return unique;
} 
以上方式也可以使用 new 的方式来进行(形式主义的赶脚)。当然这边只是给了闭包的一种例子而已,也可以在 Construct 中判断单例是否存在 等等。 各种方式在各个不同情况做好选着即可。

使用数据缓存来存储该单例,用作判断单例是否已经生成,是单例模式主要的实现思路。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值