理解贝叶斯分类器原理及关系

本文介绍了贝叶斯分类器的基本概念,通过案例解释其工作原理,并探讨了朴素贝叶斯分类器和半朴素贝叶斯分类器的关系及其在属性相关性上的差异。文章指出,朴素贝叶斯分类器假设属性相互独立,但在属性有相关性时,半朴素贝叶斯分类器允许属性依赖。同时,提到了贝叶斯网络作为处理复杂属性关系的方法。
摘要由CSDN通过智能技术生成

作者:vicky_siyu 致谢:小龙快跑jly, 巧儿、克力,Esther_or so,雨佳小和尚, 老实憨厚的叶子

本文是对贝叶斯分类器的初步理解,通过案例解释贝叶斯并对贝叶斯分类器的关系进一步分析和理解。本文只是在学习后进行了总结并加入了自己的理解,如有不妥之处,还望海涵,也希望大家多多指教,一起学习!

一、 贝叶斯三连问

贝叶斯分类器是什么?有什么用?怎么用?

为了更好地理解这个问题,我们先看一个案例:
案例(来源于西瓜书):[1]

编号 色泽 根蒂 敲声 纹理 脐部 触感 密度 含糖率 好瓜
1 青绿 蜷缩 浊响 清晰 凹陷 硬滑 0.697 0.460
2 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 0.774 0.376
3 乌黑 蜷缩 浊响 清晰 凹陷 硬滑 0.634 0.264
4 青绿 蜷缩 沉闷 清晰 凹陷 硬滑 0.608 0.318
5 浅白 蜷缩 浊响 清晰 凹陷 硬滑 0.556 0.215
6 青绿 稍蜷 浊响 清晰 稍凹 软粘 0.403 0.237
7 乌黑 稍蜷 浊响 稍糊 稍凹 软粘 0.481 0.149
8 乌黑 稍蜷 浊响 清晰 稍凹 硬滑 0.437 0.211
9 乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 0.666 0.091
10 青绿 硬挺 清脆 清晰 平坦 软粘 0.243 0.267
11 浅白 硬挺 清脆 模糊 平坦 硬滑 0.245 0.057
12 浅白 蜷缩 浊响 模糊 平坦 软粘 0.343 0.099
13 青绿 稍蜷 浊响 稍糊 凹陷 硬滑 0.639 0.161
14 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 0.657 0.198
15 乌黑 稍蜷 浊响 清晰 稍凹 软粘 0.360 0.370
16 浅白 蜷缩 浊响 模糊 平坦 硬滑 0.593 0.042
17 青绿 蜷缩 沉闷 稍糊 稍凹 硬滑 0.719 0.103

判断一个具有特征:{色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.460}的测试样例瓜是否为好瓜?

这个问题其实就是一个分类问题,而且是个二分类问题,是不是好瓜?分类的原理很简单,就是判断这个样例属于好瓜的概率和属于坏瓜的概率哪个更大,即后验概率P(c│x)哪个更大。

常见的分类方法有决策树、人工神经网络、支持向量机、贝叶斯分类器等。
(PS:各种分类方法的优缺点可参考[2])
这些分类方法主要分为两种模型,见下表: [3]

分类模型 判别式模型 生成式模型
分类原理 直接对后验概率P(c│x)进行建模 对联合概率分布P(x,c)建模,之后由条件概率公式得出后验概率
相关算法 决策树、人工神经网络、支持向量机 贝叶斯分类器

简单说,贝叶斯分类器就是一种分类的方法,而且是一种基于贝叶斯原理,对联合概率分布p(x,c)建模,之后由条件概率公式得出后验概率的生成式模型的方法。(注: P ( x , c ) = P ( x │ c ) P ( c ) P(x,c)= P(x│c) P( c ) P(x,c)=P(xc)P(c)

那怎么用呢?
首先,我们复习一下贝叶斯定理
P ( c ∣ x ) = P ( x ∣ c ) P ( c ) P ( x ) P(c|x) = \frac{P(x|c)P(c)}{P(x)} P(cx)=P(x)P(xc)P(c)

P(c│x) P(x│c) P(c ) P(x)
属性x属于类别c的概率 类别c中x属性出现的概率 某个类别发生的概率 属性x出现的概率
后验 似然 先验 证据因子

Ps. 似然函数 L ( x ; θ ) L(x;θ) L(xθ)在形式上,其实就是样本的联合密度。
x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3,…, x n x_n xn看作常数,而把待定参数 θ 0 θ_0 θ0 θ 1 θ_1 θ1,…, θ n θ_n θn看作 L 的自变量。对连续型总体X 和离散型随机变量X,样本的似然函数分别是概率密度和分布率的连乘形式。

贝叶斯分类器目的就是分类,即判断含有属性x的样本属于哪一类,也就是判断后验 P ( c │ x ) P(c│x) P(cx)在不同的类别时概率的大小,后验概率越大说明所属的类别越有可能是正确的类别。因此,我们的目标就转化为了最大化后验概率,然后将后验概率最大的类别判定为该样本所属的类别。例如: m a x P ( c ∣ x ) = P ( c 2 ∣ x ) maxP(c|x) =P(c_2|x) maxP(cx)=P(c2x) x x x属于 c 2 c_2 c2

对于同一个样本而言P(x)都是一样的,对分类结果没有什么影响,为了提高运行效率,我们在计算时可以不考虑证据因子P(x)。最大化后验概率便转化为了最大化似然与先验的乘积。则 P ( c ∣ x ) = P ( x ∣ c ) P ( c ) P ( x ) P(c|x) = \frac{P(x|c)P(c)}{P(x)} P(cx)=P(x)P(xc)P(c)在不考虑 P ( x ) P(x) P(x)后转化为: P ( c ∣ x ) = P ( x ∣ c ) P ( c ) P(c|x) = {P(x|c)P(c)} P(cx)=P(xc)P(c)

接下来的问题就是分别计算似然与先验,然后算一下乘积。
案例中的先验比较好计算,先验: P ( 好 瓜 = 是 ) = 8 / 17 ≈ 0.471 P ( 好 瓜 = 否 ) = 9 / 17 ≈ 0.529 P(好瓜=是)=8/17≈0.471 \\P(好瓜=否)=9/17≈0.529 P(=)=8/170.471P(=)=9/170.529
但是似然就有点麻烦了,样本有8个特征属性,但是这8个特征属性都要同时满足似然才不为0,在现实中其他案例里特征属性更多,维度更高,如果样本量还很少,计算似然就更麻烦了。所以为了简化计算,往往采用朴素贝叶斯分类器(Naive Bayes Classifiers, NBC)的方法,即假设各属性之间相互独立。则 m a x P ( x ∣ c ) P ( c ) maxP(x|c)P(c) maxP(xc)P(c)转化为 m a x ( P ( c ) ∏ i = 0 m P (

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值