排列组合详解

在笔试题中看到的一个选择题

用1*3的瓷砖密铺3*20的地板有几种方式?

排列组合问题

排列和组合问题,其实是两种问题,区分它们的原则是是否需要考虑顺序的不同。排列问题,考虑顺序;组合问题,不考虑顺序。以下4个问题,哪个是排列,哪个是组合?

Q1: 一套书共有1-6 册,从书架上把它们全部取下。有多少种取法?
Q2: 有5个红球,3个黄球,2个黑球,从中选择2个球。有多少种不同的选择?
Q3: 10个候选人,选3个作为领队,有多少种选择方案?
Q4: 有一把3位数字密码锁,最多需要试多少次才能打开?

以上4个问题,1和4属于排列问题,2和3是组合问题。取书问题中,{1, 2, 3, 4, 5, 6}和{1, 6, 5, 4, 3, 2},两种方法顺序不同,属于不同的取法,即要考虑顺序不同的排列问题。选球问题中,第1次选黄第2次选黑,和第1次选黑第2次选黄,是相同的选择,即不同考虑顺序不同的组合问题。

此外,考虑是否重复又可分为排列可重复问题、排列不可重复问题、组合可重复问题、组合不可重复问题。例如Q4,{1, 2, 1}是一种密码,数字是可重复的。Q1,取书问题,就无法同一册书取两次,是不可重复的。

排列可重复

那么,何为“可重复”呢?暂且不考虑排列组合,先解释可重复。举个例子,冰淇淋有3种口味可以选择,我可以选择3种相同口味,也可以选择不同口味,每次选择即可相同也可不相同。再举个例子抛硬币3次,很显然,可能会出现3次都是正面,硬币出现正反面是可重复的。典型的问题如,开锁问题,彩票问题,都是排列可重复问题。

排列可重复问题公式如下,每次n种选择,选择r次的排列共有:nr

这很好理解,一次有 n种选择,第二次有n∗n种选择,……,第 r次有nr种选择。

排列不可重复

不可重复也很好理解了。例如,打桌球问题,一共15个球,打进所有球有多少种打法。这种情况下,不可能一个球重复打进,第一次击球有15种可能,第二次只有14种,……,最后一次就只有一个球了,只有一种可能。

这个打桌球问题,可以这样理解。首先,共有15个球,全部打完,共有多少种排列?显然,15∗14∗…∗2∗1=15! 。然后考虑,不全部打完呢?打3次有多少种排列,显然15∗14∗13,为了公式的整齐可以写成:

在这里插入图片描述
排列不可重复问题更一般的公式如下, n个球,打r次的排列共有:
在这里插入图片描述

组合不可重复

组合可重复问题放在最后,先看组合不可重复。先看例子,共有红黄蓝绿黑5种颜色的球,随机取3次有几种颜色组合。{红、绿、黄}和{黄、绿、红}虽然顺序不同,但是相同的组合,即只算一种情况。同时,不可能出现{红、红、黄},即这是一个不可重复问题。

首先,显然红黄绿是1种组合,我们来看红黄绿有多少种排列。

在这里插入图片描述
即3∗2∗1=3!种排列,是同1种组合。所以本问题中,首先根据排列不重复问题,我们求出所有的排列:
在这里插入图片描述
再除以3!就是我们需要的组合数了。所以组合不重复问题的公式为:
在这里插入图片描述

组合可重复

举个例子,有5种冰淇淋口味{咖啡,香草,草莓,香蕉,香芋},选3次,口味可重复,共有多少种组合。口味分别用字母{C, V, S, B, T}代替,用走方格来简化,◯表示选择当前字符,>表示移动到下一格。

CVSBT

选择{C, B, B},可以记作◯>>>◯◯>
选择{V, S, T},可以记作>◯>◯>>◯>
选择{T, C, T},由于顺序不重要,所以等于{C, T, T}可以记作◯>>>>◯◯ 。

所以,将问题转化为从头开始走方格到最后一格,◯和>的组合问题。不论怎么选择,移动到最后一格都需要5-1=4步,加上选择的3步,所以共有(5-1)+3=7种可能,其中3个圆圈,共有:
在这里插入图片描述
可以转化成组合不重复问题,看作共有(r+n-1)个球,从中选择r个,即:
在这里插入图片描述

组合可重复的公式为:
在这里插入图片描述
所以解题的关键在于如何将问题转化为我们熟悉的排列组合问题。下面我们再来看一个例子,如何将问题转化。

在这里插入图片描述
如果选择{1,2,2},◯>◯◯>>则代表了在位置1插入1个红球,在位置2插入2个红球,即6个球的组合为{红,白,红,红,白,白};

如果选择{2,2,2},>◯◯◯>>则代表在位置2插入3个红球,6个球的位置即为{白,红,红,红,白,白}。
所以,n=4,r=3按照公式:
在这里插入图片描述

所以回到一开始的题目。应该怎么算呢?

待续


参考文献:
https://www.mathsisfun.com/combinatorics/combinations-permutations.html

本文转载自:https://blog.csdn.net/zeo_m/article/details/80505404?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-8.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-8.control

<think>嗯,我现在要详细解释数学中的排列组合,首先得理清楚这两个概念的基本定义和区别。排列和组合都是处理从集合中选择元素的问题,但排列考虑顺序,而组合不考虑。比如说,排列的话,ABC和ACB是不同的排列,但如果是组合的话,它们就算作同一个组合。 先从排列开始。排列分为两种:全排列和选排列。全排列指的是所有元素都参与排列的情况。比如,有三个不同的元素A、B、C,它们的全排列数目就是3!,也就是6种。这个我记得阶乘的概念,n个不同元素的全排列是n!,对吧?这时候要举例子的话,比如3个不同的球排成一列,有多少种排法,就是3! = 6种。 然后是选排列,也就是从n个元素中选出k个来排列的情况。这时候的排列数应该是n的阶乘除以(n−k)的阶乘,也就是P(n, k)或者A(n, k) = n! / (n−k)!。比如从5个学生中选3个来当班长、副班长和学习委员,不同的职位顺序不同,所以这就是排列问题,结果就是5×4×3=60种,或者用公式计算5!/(5−3)! = 120/2 = 60。 接下来是组合,组合不考虑顺序。比如从5个人中选3个人组成一个小组,这时候不管这三个人被选出的顺序如何,都是同一个组合。组合数用C(n, k)或者组合符号上下标表示,公式是C(n, k) = n! / [k!(n−k)!]。比如上面的例子,C(5,3) = 10种。这里需要注意的是,组合数一定小于等于排列数,因为排列考虑了顺序,而组合没有。 然后要讲一些常见的排列组合问题类型。比如,相邻问题,这时候可能需要用捆绑法。比如,把A和B必须相邻,就把他们看成一个整体,然后和其他元素一起排列,再考虑内部顺序。比如有4个人排成一排,其中A和B必须相邻,那么总共有3!×2! = 12种排法。 不相邻的问题可能会用插空法。比如,排4个人,其中A和B不能相邻。可以先排其他两个人,有2!种,然后产生3个空位,把A和B插入,是A(3,2)=6种,总共有2!×6=12种。不过这个例子可能有问题,因为如果总共有4个人,另外两个人排好后有3个空位,插入A和B的话,确实是排列数,所以总数是2!×3×2=12种。 然后还有分组问题,比如平均分组和非平均分组。比如,把6个人分成3组,每组2人,这时候如果各组没有区别的话,就需要除以组数的阶乘,避免重复计算。所以组合数是C(6,2)×C(4,2)×C(2,2)/3!。例如,C(6,2)=15,C(4,2)=6,C(2,2)=1,乘起来是15×6×1=90,再除以3!得15种分法。但如果是有区别的组,比如不同的任务,那么就不用除以阶乘,直接相乘即可。 还有环形排列的问题,比如n个人围成一个圆桌,排列数是(n−1)!,因为相对于圆桌来说,固定一个人的位置后,剩下的排列就是线性的(n−1)!种。例如,5个人围坐,有4! =24种不同的坐法。 然后可能有一些特殊情况的排列组合,比如允许重复或者不允许重复的情况。比如,排列中如果允许重复,比如密码锁的每个位置都可以有10个数字,那么k位的密码就有10^k种可能。而排列中不允许重复的话,就是n!/(n−k)!种。同样,组合允许重复的情况下,比如从3种水果中选5个,允许重复,那么组合数是C(n+k−1, k),也就是C(3+5−1,5)=C(7,5)=21种,这里用的是星与条方法。 再讲一些排列组合的应用,比如二项式定理中的系数就是组合数,或者概率中的计算,比如从一副牌中抽取特定的组合的概率。 需要注意的易错点,比如区分排列和组合,是否考虑顺序;分步时是乘法原理还是加法原理;分组问题中是否平均分组,是否需要除以组数的阶乘;环形排列与直线排列的区别;元素是否可重复等。 最后总结排列组合的基本公式和常见问题类型,帮助读者系统掌握。可能还要举一些例题来巩固这些概念,比如经典的排列组合问题,如鸽巢原理、排列组合在密码学中的应用等。</think>数学排列组合详解 排列组合是数学中研究元素选择与排列方式的重要工具。下面分步骤详细讲解核心概念、公式和应用: --- ### 一、基本概念与公式 #### 1. **排列(Permutation)** - **定义**:从 $n$ 个不同元素中选出 $k$ 个元素并按顺序排列。 - **公式**: - **全排列**(所有元素参与):$$P(n) = n!$$ 例:3 本书排成一列的方式为 $3! = 6$ 种。 - **选排列**(部分元素参与):$$P(n, k) = \frac{n!}{(n-k)!}$$ 例:从 5 人中选 3 人领奖(顺序不同视为不同结果),方式为 $P(5,3) = 5 \times 4 \times 3 = 60$ 种。 #### 2. **组合(Combination)** - **定义**:从 $n$ 个不同元素中选出 $k$ 个元素,**不考虑顺序**。 - **公式**:$$C(n, k) = \frac{n!}{k!(n-k)!}$$ 例:从 5 人中选 3 人组成小组,方式为 $C(5,3) = \frac{5!}{3!2!} = 10$ 种。 --- ### 二、常见问题类型 #### 1. **相邻问题(捆绑法)** - **方法**:将必须相邻的元素视为一个整体,与其他元素排列后考虑内部顺序。 - **例**:将 $A$ 和 $B$ 必须相邻的 4 人排列,方式为 $3! \times 2! = 12$ 种。 #### 2. **不相邻问题(插空法)** - **方法**:先排列其他元素,再将不相邻元素插入空隙。 - **例**:$A$ 和 $B$ 不相邻的 4 人排列,方式为 $2! \times P(3,2) = 12$ 种。 #### 3. **分组问题** - **平均分组**:若将 $n$ 个元素均分到 $k$ 个无区别的组,需除以组数的阶乘。 - **例**:6 人分 3 组(每组 2 人),方式为 $\frac{C(6,2) \times C(4,2)}{3!} = 15$ 种。 - **非平均分组**:若组有区别,直接按组合数相乘。 #### 4. **环形排列** - **公式**:$n$ 人围成圆桌的方式为 $(n-1)!$。 - **例**:5 人围坐的方式为 $4! = 24$ 种。 #### 5. **允许重复的排列与组合** - **重复排列**:$n$ 个元素选 $k$ 个允许重复,方式为 $n^k$。 - **例**:3 位密码每位可为 0-9,总方式为 $10^3 = 1000$ 种。 - **重复组合**:公式为 $C(n+k-1, k)$。 - **例**:从 3 种水果中选 5 个(可重复),方式为 $C(7,5) = 21$ 种。 --- ### 三、核心应用 1. **二项式定理**:$$(a+b)^n = \sum_{k=0}^n C(n, k) a^{n-k}b^k$$ 2. **概率计算**:如扑克牌中特定牌型的概率。 3. **密码学**:计算密码可能的组合数。 --- ### 四、易错点总结 1. **排列 vs 组合**:是否考虑顺序。 2. **分步乘法原理**:独立步骤用乘法(如密码每位选择)。 3. **分组问题**:区分组是否有区别,是否需要消除重复计数。 4. **环形排列**:固定一个元素以消除旋转等价。 --- 通过理解以上概念和分类练习,可逐步掌握排列组合的核心逻辑与应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值