排列组合定义及基本公式

排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。

### 排列组合的性质与公式 排列组合是组合数学的重要组成部分,其核心在于研究特定条件下可能产生的排列和组合情况总数。以下是常见的 **11个排列组合性质与公式**: #### 1. 基本定义 - 排列数表示从 $n$ 个不同元素中选取 $m$ ($m \leq n$) 个元素并按一定顺序排列的方式数目,记作 $A_n^m$ 或 $P(n, m)$[^3]。 $$ A_n^m = P(n, m) = \frac{n!}{(n-m)!} $$ - 组合数表示从 $n$ 个不同元素中选取 $m$ ($m \leq n$) 个元素而不考虑顺序的方式数目,记作 $C_n^m$ 或 $\binom{n}{m}$。 $$ C_n^m = \binom{n}{m} = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!} $$ --- #### 2. 对称性 对于任意正整数 $n$, 当 $0 \leq m \leq n$ 时, $$ \binom{n}{m} = \binom{n}{n-m}. $$ 这表明,在取法数量上,“选 $m$ 个” 和 “剩下 $n-m$ 个”的方式是一样的。 --- #### 3. 加法规则 如果完成某件事情可以通过两种互斥的方法实现,则总方法数等于每种方法单独的数量之和。即: $$ |A \cup B| = |A| + |B| $$ --- #### 4. 乘法规则 如果完成某件事可以分为两个独立步骤,第一步有 $a$ 种方法,第二步有 $b$ 种方法,则总的完成方法数为两者的积: $$ |A \times B| = a \cdot b. $$ --- #### 5. 阶乘展开 阶乘是一个重要的工具,用于计算排列和组合。具体如下: $$ n! = n \cdot (n-1) \cdot (n-2) \cdots 1, $$ 其中特别规定 $0! = 1$. --- #### 6. 特殊情形下的组合数 当 $m=0$ 或 $m=n$ 时,$\binom{n}{m}=1.$ 这是因为无论是否全选或全不选,都只有一种可能性。 --- #### 7. 杨辉三角形规律 杨辉三角形每一行对应于二项式系数 $(x+y)^n$ 的各项系数。它也揭示了组合数之间的递推关系: $$ \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}, $$ 这里假设边界条件合理设置。 --- #### 8. 多重集合上的排列 设有一个多重集 $S=\{\underbrace{x_1,x_1,\ldots,x_1}_{p},\underbrace{x_2,x_2,\ldots,x_2}_q,...\}$ ,那么从中选出全部元素的不同排列总数为: $$ \text{Permutations}(S)=\frac{(p+q+\dots)!}{p!\cdot q!\cdot\dots}. $$ --- #### 9. 圆周排列 如果有 $n$ 个人围成一圈就座,则不同的圆桌排列数为 $(n-1)!,$ 而不是普通的线性排列数 $n!.$ 此外需要注意固定一点来消除旋转带来的重复计数影响。 --- #### 10. 容斥原理应用到组合问题 在某些复杂场景下需要用到容斥原则解决超限或者交叠部分统计难题。比如求解满足若干约束条件的对象总数时常会涉及此技巧。 --- #### 11. 斯特林近似 针对大数情况下难以直接运算的情形可采用斯特林逼近简化处理: $$ n! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n. $$ 以上列举了一些主要且常用的排列组合相关理论知识点及其表达形式[^2][^3]. ```python from math import factorial as fact def combination(n, k): """Calculate C(n,k).""" return fact(n)//(fact(k)*fact(n-k)) print(combination(5, 2)) # Example output: 10 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值