布隆过滤器总结

布隆过滤器

就是把数据通过hash函数计算出来标记在不同的位置

image-20220222112518496

然后查找的时候也是用hash函数算出值,去找一下1,4,7上的数据是不是1,不是1的话就不存在

存入布隆过滤器的缺点就是不可以删除数据,但是与set不同在于可以加入重复的数据,因为其原理就是通过hash算法分散到不同的位置进行标记,重复只不过是重复了上述过程。

布隆过滤器使用场景

场景一:当前需要维护一个内存,去存储uid这个字段,可是这个字段数据量比较大可能有两百万左右,那么一个integer占用16个字节,hashset要16个字节,一共3200万字节

image-20220222114126882

但是如果使用布隆过滤器可以有效的降低存储压力,其一个size就一个字节,两百万的数据就两百万字节,但是其有误判率,所以当我们将size扩大五倍,误判就大大减小了,也就一千万字节,也是原来的三分之一。

场景二:当大量的数据同时打到redis上,但redis上都没有数据,这个时候就可以用布隆过滤器,来过滤redis上是否有数据才去访问redis。

布隆过滤器的实现

手动实现(不推荐),因为已经有封装好的包了

import java.util.Arrays;
import java.util.BitSet;


public class MyBloomFilter {
    //你的布隆过滤器容量
    private static final int DEFAULT_SIZE = 2 << 28;
    //bit数组,用来存放结果
    private static BitSet bitSet = new BitSet(DEFAULT_SIZE);
    //后面hash函数会用到,用来生成不同的hash值,可随意设置,别问我为什么这么多8,图个吉利
    private static final int[] ints = {1, 6, 16, 38, 58, 68};

    //add方法,计算出key的hash值,并将对应下标置为true
    public void add(Object key) {
        Arrays.stream(ints).forEach(i -> bitSet.set(hash(key, i)));
    }

    //判断key是否存在,true不一定说明key存在,但是false一定说明不存在
    public boolean isContain(Object key) {
        boolean result = true;
        for (int i : ints) {
            //短路与,只要有一个bit位为false,则返回false
            result = result && bitSet.get(hash(key, i));
        }
        return result;
    }

    //hash函数,借鉴了hashmap的扰动算法
    private int hash(Object key, int i) {
        int h;
        return key == null ? 0 : (i * (DEFAULT_SIZE - 1) & ((h = key.hashCode()) ^ (h >>> 16)));
    }
}

guava实现的布隆过滤器(推荐!!!)

//先加入maven
		<dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>28.0-jre</version>
        </dependency>
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;

public class test {
    private static int size = 200000000;
    private static double fpp = 0.00001;
    private static BloomFilter<Long> bloomFilter = BloomFilter.create(Funnels.longFunnel(), size, fpp);
    public static void main(String[] args) {
        bloomFilter.put(1l);
        System.out.println(bloomFilter.mightContain(1l));

    }
}
//其中Funnels.longFunnel()主要是数据类型,这里以long型举例,size就是布隆过滤器的大小,fpp是误判率,fpp越小运行的时间就越久

redis布隆过滤器

package com.ys.rediscluster.bloomfilter.redisson;

import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;

public class RedissonBloomFilter {

    public static void main(String[] args) {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.14.104:6379");
        config.useSingleServer().setPassword("123");
        //构造Redisson
        RedissonClient redisson = Redisson.create(config);

        RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
        //初始化布隆过滤器:预计元素为100000000L,误差率为3%
        bloomFilter.tryInit(100000000L,0.03);
        //将号码10086插入到布隆过滤器中
        bloomFilter.add("10086");

        //判断下面号码是否在布隆过滤器中
        System.out.println(bloomFilter.contains("123456"));//false
        System.out.println(bloomFilter.contains("10086"));//true
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值