文章目录
二叉树遍历
先序遍历
class Solution {
public List<Integer> preOrderRecursively(TreeNode root){
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
res.add(root.val);
preOrderRecursively(root.left);
preOrderRecursively(root.right);
return res;
}
public List<Integer> preOrderIteratively(TreeNode tree){
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
TreeNode root = tree;
Stack<TreeNode> stack = new Stack<>();
while(root != null || !stack.isEmpty()){
if(root != null){
res.add(root.val);
stack.push(root);
root = root.left;
}else{
root = stack.pop().right;
}
}
return res;
}
}
中序遍历
public List<Integer> inOrderRecursively(TreeNode root){
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
preOrderRecursively(root.left);
res.add(root.val);
preOrderRecursively(root.right);
return res;
}
public List<Integer> inOrderIteratively(TreeNode tree){
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
TreeNode root = tree;
Stack<TreeNode> stack = new Stack<>();
while(root != null || !stack.isEmpty()){
if(root != null){
stack.push(root);
root = root.left;
}else{
res.add(root.peek());
root = stack.pop().right;
}
}
return res;
}
}
后序遍历
class Solution {
public List<Integer> postOrderRecursively(TreeNode root){
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
preOrderRecursively(root.left);
preOrderRecursively(root.right);
res.add(root.val);
return res;
}
public List<Integer> postOrderIteratively(TreeNode tree){
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
TreeNode root = tree;
TreeNode prevVisted = null;
Stack<TreeNode> stack = new Stack<>();
while(root != null || !stack.isEmpty()){
if(root != null){
stack.push(root);
root = root.left;
}else{
root = stack.peek().right;
if(root != null && root != prevVisted){
stack.push(root);
root = root.left;
}else{
prevVisted = stack.pop();
res.add(prevVisted.val);
root = null;
}
}
}
return res;
}
}
层序遍历
class Solution {
public List<Integer> levelOrder1(TreeNode tree) {
List<Integer> res = new ArrayList<>();
if(tree == null){
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.add(tree);
TreeNode temp = null;
while (!queue.isEmpty()) {
temp = queue.poll();
res.add(temp.val);
if (temp.left != null) {
queue.offer(temp.left);
}
if (temp.right != null) {
queue.offer(temp.right);
}
}
return res;
}
public List<Integer> levelOrder2(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(tree == null){
return res;
}
Queue queue = new LinkedList();
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = size - 1; i >= 0; i--) {
TreeNode temp = (TreeNode) queue.poll();
res.add(temp.val);
if (temp.left != null) {
queue.offer(temp.left);
}
if (temp.right != null) {
queue.offer(temp.right);
}
}
return res;
}
}
}
JZ55 二叉树的深度
输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度,根节点的深度视为 1 。
例
输入:{1,2,3,4,5,#,6,#,#,7}
输出:4
1、递归
public class Solution {
public int TreeDepth(TreeNode root) {
if(root == null){
return 0;
}
int left = TreeDepth(root.left);
int right = TreeDepth(root.right);
return Math.max(left , right) + 1;
}
}
2、层序遍历
public class Solution {
public int TreeDepth(TreeNode root) {
if (root == null) {
return 0;
}
int depth = 0;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
depth++;
}
return depth;
}
}
JZ79 判断是不是平衡二叉树
输入一棵节点数为 n 二叉树,判断该二叉树是否是平衡二叉树。
例
输入:{1,2,3,4,5,6,7}
输出:true
class Solution {
public boolean isBalanced(TreeNode root) {
if(deep(root) == -1){
return false;
}
return true;
}
public int deep(TreeNode root){
if(root == null){
return 0;
}
int left = deep(root.left);
if(left == -1){
return -1;
}
int right = deep(root.right);
if(right == -1){
return -1;
}
if(Math.abs(left - right) > 1){
return -1;
}
return left > right? left+1 : right+1;
}
}
JZ27 二叉树的镜像
操作给定的二叉树,将其变换为源二叉树的镜像。
例
输入:{8,6,10,5,7,9,11}
输出:{8,10,6,11,9,7,5}
class Solution {
public TreeNode mirrorTree(TreeNode root) {
if(root == null){
return null;
}
TreeNode tmp = root.left;
root.left = root.right;
root.right = tmp;
mirrorTree(root.left);
mirrorTree(root.right);
return root;
}
}
// 层次遍历
class Solution {
public TreeNode mirrorTree(TreeNode root) {
if(root == null){
return null;
}
Queue<TreeNode> queue = new LinkedList<>();
TreeNode node = null;
queue.add(root);
while(!queue.isEmpty()){
node = queue.poll();
if(node.left != null){
queue.add(node.left);
}
if(node.right != null){
queue.add(node.right);
}
TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;
}
return root;
}
}
JZ28 对称的二叉树
请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。
例
输入:{1,2,2,3,4,4,3}
输出:true
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null){
return true;
}
return isEqual(root.left, root.right);
}
public boolean isEqual(TreeNode left, TreeNode right){
if(left == null && right == null){
return true;
}
if(left == null || right == null){
return false;
}
if(left.val == right.val){
return isEqual(left.left, right.right) && isEqual(left.right, right.left);
}else{
return false;
}
}
}
JZ26 树的子结构
输入两棵二叉树A,B,判断B是不是A的子结构。(我们约定空树不是任意一个树的子结构)
例
输入:{8,8,7,9,2,#,#,#,#,4,7},{8,9,2}
输出:true
class Solution {
public boolean isSubStructure(TreeNode A, TreeNode B) {
if(A == null || B == null){
return false;
}
return isSubStructure(A.left, B) || isSubStructure(A.right, B) || hasSubTree(A, B);
}
public boolean hasSubTree(TreeNode A, TreeNode B){
if(B == null){
return true;
}
if(A == null){
return false;
}
if(A.val == B.val){
return hasSubTree(A.left, B.left) && hasSubTree(A.right, B.right);
}else{
return false;
}
}
}
JZ32 从上往下打印二叉树 Ⅰ
不分行从上往下打印出二叉树的每个节点,同层节点从左至右打印。
例
输入:{8,6,10,#,#,2,1}
输出:[8,6,10,2,1]
class Solution {
public ArrayList<Integer> PrintFromTopToBottom(TreeNode root) {
ArrayList<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
TreeNode node = queue.poll();
if(node.left != null){
queue.offer(node.left);
}
if(node.right != null){
queue.offer(node.right);
}
res.add(node.val);
}
return res;
}
}
JZ78 从上往下打印二叉树 Ⅱ
从上到下按层打印二叉树,同一层的节点按从左到右的顺序打印,每一层打印到一行。
例
输入:{8,6,10,#,#,2,1}
输出:[[8],[6,10],[2,1]]
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
if (root == null) {
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> list = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
list.add(node.val);
}
res.add(list);
}
return res;
}
}
JZ77 从上往下打印二叉树 Ⅲ
请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。
例
输入:{1,2,3,#,#,4,5}
输出:[[1],[3,2],[4,5]]
说明:如题面解释,第一层是根节点,从左到右打印结果,第二层从右到左,第三层从左到右。
public class Solution {
public ArrayList<ArrayList<Integer>> Print (TreeNode pRoot) {
ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>();
if (pRoot == null) {
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(pRoot);
boolean flag = false;
while (!queue.isEmpty()) {
int size = queue.size();
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
if(flag){
list.add(0, node.val);
}else{
list.add(node.val);
}
}
res.add(list);
flag = !flag;
}
return res;
}
}
JZ7 重建二叉树
给定节点数为 n 的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。
例
输入:[1,2,4,7,3,5,6,8],[4,7,2,1,5,3,8,6]
输出:{1,2,3,4,#,5,6,#,7,#,#,8}
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if(preorder.length == 0 || inorder.length == 0){
return null;
}
TreeNode root = new TreeNode(preorder[0]);
int len = preorder.length;
for(int i=0; i<len; i++){
if(inorder[i] == preorder[0]){
root.left = buildTree(Arrays.copyOfRange(preorder, 1, i+1), Arrays.copyOfRange(inorder, 0, i));
root.right = buildTree(Arrays.copyOfRange(preorder, i+1, len), Arrays.copyOfRange(inorder, i+1, len));
}
}
return root;
}
}
JZ33 二叉搜索树的后序遍历序列
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则返回 true ,否则返回 false 。假设输入的数组的任意两个数字都互不相同。
例
输入:[1,3,2]
输出:true
public class Solution {
public boolean VerifySquenceOfBST(int [] sequence) {
if(sequence.length == 0){
return false;
}
return verify(sequence);
}
public boolean verify(int[] sequence){
int len = sequence.length;
if(len == 0){
return true;
}
int root = sequence[len-1];
int index = 0;
while(index < len-1){
if(sequence[index] > root){
break;
}
index++;
}
int temp = index;
while(temp < len-1){
if(sequence[temp] < root){
return false;
}
temp++;
}
return verify(Arrays.copyOfRange(sequence, 0, index)) && verify(Arrays.copyOfRange(sequence, index, len-1));
}
}
JZ54 二叉搜索树的第k个节点
给定一棵二叉搜索树,请找出其中第
k
大的节点的值。例
输入:root = [3,1,4,null,2], k = 1
输出:4
class Solution {
public int kthLargest(TreeNode proot, int k) {
if(proot == null){
return -1;
}
Stack<TreeNode> stack = new Stack<>();
while(proot != null || !stack.isEmpty()){
if(proot != null){
stack.push(proot);
proot = proot.right;
}else{
if(--k == 0){
return stack.peek().val;
}
proot = stack.pop().left;
}
}
return -1;
}
JZ68 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
例
输入:root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出:6
1、递归
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(p.val < root.val && q.val < root.val){
return lowestCommonAncestor(root.left, p, q);
}else if(p.val > root.val && q.val > root.val){
return lowestCommonAncestor(root.right, p, q);
}else{
return root;
}
}
}
2、非递归
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
while(root != null){
if(root.val < p.val && root.val < q.val){
root = root.right;
}else if(root.val > p.val && root.val > q.val){
root = root.left;
}else{
break;
}
}
return root;
}
}
JZ37 序列化二叉树
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
例
输入:{1,2,3,#,#,6,7}
输出:{1,2,3,#,#,6,7}
public class Solution {
String Serialize(TreeNode root) {
if (root == null) {
return "[]";
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
StringBuilder res = new StringBuilder("[");
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (node != null) {
res.append(node.val + ",");
queue.offer(node.left);
queue.offer(node.right);
} else {
res.append("null,");
}
}
res.deleteCharAt(res.length()-1);
res.append("]");
return res.toString();
}
TreeNode Deserialize(String str) {
if (str.equals("[]")) {
return null;
}
String[] arr = str.substring(1, str.length() - 1).split(",");
Queue<TreeNode> queue = new LinkedList<>();
TreeNode root = new TreeNode(Integer.parseInt(arr[0]));
queue.offer(root);
int index = 1;
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (!arr[index].equals("null")) {
node.left = new TreeNode(Integer.parseInt(arr[index]));
queue.offer(node.left);
}
index++;
if (!arr[index].equals("null")) {
node.right = new TreeNode(Integer.parseInt(arr[index]));
queue.offer(node.right);
}
index++;
}
return root;
}
}
补充1 二叉树的直径
给你一棵二叉树的根节点,返回该树的 直径 。二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点
root
。两节点之间路径的 长度 由它们之间边数表示。例
输入:root = [1,2,3,4,5]
输出:3
说明:3 ,取路径 [4,2,1,3] 或 [5,2,1,3] 的长度。
class Solution {
int res = 0;
public int diameterOfBinaryTree(TreeNode root) {
dfs(root);
return res;
}
public int dfs(TreeNode node){
if(node == null){
return 0;
}
int left = dfs(node.left);
int right = dfs(node.right);
res = Math.max(left + right, res);
return Math.max(left, right) + 1;
}
}
补充2 二叉树的右视图
给定一个二叉树的 根节点
root
,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。例
输入:[1,2,3,null,5,null,4]
输出:[1,3,4]
1、层序遍历
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
int size = queue.size();
for(int i=0; i<size; i++){
TreeNode node = queue.poll();
if(node.left != null){
queue.offer(node.left);
}
if(node.right != null){
queue.offer(node.right);
}
if(i == size-1){
res.add(node.val);
}
}
}
return res;
}
}
2、深度优先
class Solution {
List<Integer> res = new ArrayList<>();
public List<Integer> rightSideView(TreeNode root) {
dfs(root, 0);
return res;
}
public void dfs(TreeNode root, int depth){
if(root == null){
return;
}
if(depth == res.size()){
res.add(root.val);
}
depth++;
dfs(root.right, depth);
dfs(root.left, depth);
}
}