A High-Precision Positioning Approach for Catenary Support Components With Multiscale Difference阅读笔记

A High-Precision Positioning Approach for Catenary Support Components With Multiscale Difference

多尺度差分悬链线支承构件的高精度定位方法

//2022.6.23日上午阅读笔记

论文地址

A High-Precision Positioning Approach for Catenary Support Components With Multiscale Difference | IEEE Journals & Magazine | IEEE Xplore

论文贡献

本文设计了一种自动快速定位系统,可以同时定位12类多尺度CSCs。在该系统中,提出了一种有效的CSCs网络(CSCNET)框架,将粗定位网络和精定位网络级联,以减少不同CSC之间的多尺度差异。在粗定位网络中,提出了一种基于相对定位信息的无监督聚类算法对接触网图像进行分类。然后,训练卷积神经网络(CNN)分类网络来提取接触网图像的结构特征,并生成带有标签的建议区域。在精细定位网络中,应用改进的CNN定位框架,根据粗定位结果获得CSCs的精确位置。由于具有分类网络的特殊轻量级结构,应用了相对位置信息,使得CSCNET对小规模组件非常敏感。

论文内容

1.介绍

在电气化铁路中,受电弓-接触网系统在从电网向列车传输电力方面起着重要作用。为确保电流收集的质量,接触网支撑组件(CSC)应保持接触线的稳定悬挂。由于长期在恶劣条件(高压、反复振动、腐蚀)下运行,CSCs容易出现防风线缺失、等电线松动等故障。如图1(a)所示,根据中国铁路标准【2】,CSCs包括12类。随着高速铁路的快速发展,CSCs的数量急剧增加,传统的人工检测因其效率低下而不再被接受。为了在接触网图像中定位CSC,开发了一些自动检测技术【3】。为此,应考虑以下问题。

1) 铁路线路需要对大量的图像进行处理。每个图像可以包含几十个csc,如图1(a)所示。同时,输入图像是缺乏颜色信息的灰度图像。因此,应用方法的效率尤为重要。

2) 如图1所示,尽管不同类别的csc的位置相对固定,但它们的大小相差很大。因此,应用的定位方法应对多尺度差异具有鲁棒性。

3) 由于CSCs中的各个组件结构不同[见图1(b)–(d)],因此很难使用单一的传统算法提取统一的特征。因此,所应用的方法需要具有很强的通用性。

因此,有必要开发一种CSCs自动定位系统,以提高其效率、鲁棒性、通用性和准确性。

目前,一些局部特征描述符被用来定位特定类别的CSC。例如,为了识别和定位绝缘子,采用加速鲁棒特征来建立绝缘子的特征数据库【4】。为了定位棒形绝缘子,应用了可变形零件模型和潜在支持向量机(SVM)[5]。然而,这些方法的定位目标仅涵盖少数几个CSC的类别,当覆盖更多CSC时,定位精度需要提高。

随着深度学习在目标检测中的发展,卷积神经网络(CNN)的几种结构被用于CSCs的定位。Liu等人[6]提出了一种等电线网络,该网络与更快的基于区域的CNN(更快的R-CNN)相结合,以获得包含等电线的图像区域。Chen等人[8]提出了一种基于三阶段深度卷积神经网络的检测方法来定位悬臂关节。然而,所提出的网络结构复杂,对目标有一定的限制。Zhong等人[9]提出了一种主要基于改进的CNN的三级接触网开口销缺陷自动检测系统。该系统可以直接诊断开口销的故障,但很难扩展到其他CSC。为了使用CNN评估多类别CSC的定位性能,Zhong等人采用了四种最新的有代表性的CNN,即更快的R-CNN(VGG16和ResNet 101),您只需看一次(YOLO)[10],以及单激发多盒检测器(SSD)[11],以同时定位[12]中的12类CSC。然而,如图2所示,对于CSCs中小规模组件的定位,模型的性能较差。

总之,使用单一的传统算法或经典的深度学习网络很难实现所有CSC类别的同时定位。该问题阻碍了接触网监控系统的功能完整性。因此,有必要建立一个目标检测框架来同时定位不同大小的各类CSC。

本文研究了CSCs在捕获图像中高效的同时多目标定位问题。提出了一种新的结合CNN分类网络(粗定位网)和具有快速定位网络(精细定位网络)的两阶段目标检测框架CSC网络。

本文的贡献:

1) 作为一种有效的深度学习框架,提出了CSCNET来提高多尺度差分CSCs同时定位的精度和速度。为了提高定位性能,该框架利用了CSCs的相对定位信息,增强了定位方法处理接触网图像多尺度差异的鲁棒性。

2) 与文献[6]、[8]、[9]中提出的其他定位框架和级联网络不同,引入了CNN分类网络来生成带有类别标签的建议区域。它在克服尺度差异和不平衡数据集方面发挥着重要作用。

3) 针对CSCNET中CNN分类网络的特殊分类要求,提出了一种基于CSCs定位信息和邻接表的无监督聚类算法。

2.系统概述

为了检查和检测接触网中CSCs的运行状态,高速铁路中广泛使用非接触式检查【13】。如图3所示,高分辨率摄像头和LED灯安装在夜间沿铁路线检查的专用检查车顶部。通过桅杆时经过短暂延迟后,会触发摄像头,从正面和背面拍摄CSC。捕获的图像具有6600像素×4400像素和96 dpi。将自动记录时间、位置(里程)和线路名称等相关图像信息。

所提出的CSCNET的系统架构如图4所示。将由CNN分类网络和无监督聚类算法组成的粗定位网络和由快速定位网络SSD组成的精定位网络相结合,以获得良好的定位性能。

2.1 粗定位网

对于图4中的阶段1,接触网图像分类的功能是从输入图像大致定位所有12类CSC。如第一节所述,传统的图像处理方法和一般的深度学习方法很难同时对所有类别的CSC进行高精度定位。为了解决这一问题,作为接触网图像的一个重要特征,无监督聚类算法首先利用CSCs的相对定位信息来生成分类数据集以及图像类别对带标签的建议区域之间的映射。然后,基于分类数据集训练CNN分类网络,预测输入图像的类别。最后,根据图像类别与带有标签的建议区域之间的映射,获得粗定位结果,也称为带有类别标签的建议区域[7]。

2.2 精细定位网络

对于图4中的阶段2,核心思想是使用阶段1的粗略结果以高精度定位所有12类CSC。精细定位网络受到最先进的位置模型,如SSD的启发。将两级系统级联,以可接受的计算成本获得满意的定位结果。

3.CSCNET的结构

3.1 粗定位网

与模式分析、统计建模和计算学习(P ASCAL)视觉对象类(VOC)数据集等其他数据集相比,CSCs的初始数据集是一个特殊的数据集【14】。首先,规模差异显著。其次,在接触网系统中,悬臂结构基本固定,CSC的相对位置基本不变。利用这些特征,提出了一种CNN分类网络和一种无监督聚类算法,该算法利用不同CSC之间定位关系的先验知识,利用类别标签进行区域预测。

1) 基于CSCs位置信息的无监督聚类算法:为了确保根据CSCs的位置信息对新的接触网输入图像进行分类,生成带有类别标签的建议区域,需要进行分类数据集和映射操作。这是一种无监督聚类算法,需要对具有不同测量距离的多个目标具有高灵敏度。只有当所有类别的CSC在两幅接触网图像中彼此接近时,才能将这两幅图像分组为同一类别。传统的无监督聚类算法,如K-means[15]和基于密度的噪声应用空间聚类[16],由于图像类别数量未知,且难以描述接触网图像之间的距离,因此很难应用。距离是聚类算法的重要依据。本文提出了一种无监督聚类算法,其流程图如图5所示。

聚类数据集中的图像集和注释集都遵循PASCAL VOC格式,其中包含每个图像中CSC的坐标和类别。通过人工标注和图像预处理,统计出每条接触网图像中CSC的种类及其数量。

在CSCs聚类算法中,需要对两个矩形框架的贴近度建立一个评价标准。联合交集(IOU)[14]广泛用于测量特定数据集中定位对象的精度。

但是,IOU不适合此应用程序。一方面,IOU对小规模地面真相盒的敏感性较低。另一方面,IOU生成的提案区域可能不够大,这将导致提案区域中缺少CSC。为了获得更精细的聚类结果,采用self-IOU作为IOU的改进,可以测量两个地面真值箱之间的相关性。拟定的self-IoU表达式如下:

其中,A和B是两个地面真值框的面积(A,B>0)。地面真值框是数据集图像中标记的边界框。

基于CSCs位置信息的无监督聚类算法是一种使用无权值邻接列表算法的聚类方法。如图5所示,该算法的聚类基础是接触网图像中每个CSC类别的数量(对于粗略分类结果)和每个类别中的自我IOU(对于精细分类结果)。精细聚类算法包括以下步骤(初始化图像索引,k=1)。

步骤1:选择第k条接触网图像作为第k条单链的第一个节点,并让邻接列表Ek(1)=k。初始化该邻接列表中图像的索引n=1。

步骤2:选择第(k+n)个接触网图像,并计算第(k+n)个图像和第k个图像之间的self-IoU。对于12类CSC,如果每个self-IOU大于阈值(self-IOU(i)>阈值(i),i=1、2、3、,12) ,图像被聚集到与第k个图像相同的类中,并添加到第k个单链中,并且Ek=[Ek,k+n]。

步骤3:设n=n+1。返回步骤2,直到遍历完数据集中的所有图像。

步骤4:让k=k+1。返回步骤1,直到遍历完数据集中的所有图像。

步骤5:优化邻接列表(见图6)。设l=1。判断第lth单链中是否有任何元素已经存在于第mth单链中(m=1,2,3,…,m<k)。如果确实存在,则第mth单链将添加到第lth单链。第lth条单链和第mth条单链中的重复节点也将被删除,并设En=En∪ Ek。返回步骤5,直到遍历完所有图像。

与IOU相比,self-IOU总是大于或等于IOU,因此在步骤2中会有更多的悬链线图像聚集到相同的类中,并且提议区域会更大。然而,对于大型CSC。Self-IoU的阈值需要更大,以限制提议区域的最大大小。阈值通过以下公式计算:

其中S是同一类别的地面真相盒的平均面积。

对于粗聚类,过程基本上与上述步骤相同,用每个CSC类别的数量替换self-IOU。图7显示了不同类别中的一些聚类结果。可以看出,很难根据一类CSC对图像进行分类。在两个图像类之间,有些组件类别的位置相似,而有些则不同。实验结果证明了该算法的有效性。

在无监督聚类后,将初始数据集划分为43类。每个图像对应一个图像分类,并为CNN分类网络建立分类数据集。然后,生成建议区域以及相应的标签。

首先,通过对每个精细分类结果中每个CSC类别的边界框进行并集,生成带标签的最小边界框。需要注意的是,在一幅图像中可能有两个最小边界框(如绝缘子和绝缘子底座)具有相同的标签。然后,生成带有标签的建议区域,由于添加了额外的预测区域,建议区域大于最小边界框。通过在图像顺序中记录地面真值框的位置顺序(图像顺序与捕获顺序相同)并预测位置趋势来计算附加预测区域。预测区域在x方向和y方向上的长度描述如下:

其中i是图像顺序,Num是每个精细分类结果中的图像数,x和y是地面真值框的坐标,lx和ly是x方向和y方向上预测区域的长度。最后,得到聚类结果与带标签的建议区域之间的映射。映射操作如图8所示。每个类别编号对应一系列带有标签的建议区域。

2) CNN分类网络:由于同类CSC位置相近,悬臂结构基本固定,因此同类接触网图像相似。然而,由于实际安装要求和接触网在运行过程中的振动,接触网图像仍会发生一定程度的变化。由于CNN分类网络具有很强的非线性特征提取能力和很强的鲁棒性,因此它被用来生成带有标签的建议区域。

inceptionV2网络是由Google使用inception模块构建的,对缩放差异具有很强的鲁棒性【17】。初始模块由多个1×1 c o n v、3×3 c o n v、一个n d 3×3并行池组成。不同的卷积核捕获不同大小的感受野。输入的接触网图像大多为6600×4400灰度图像。为了实现粗定位和快速定位,将输入图像的大小调整为300×300×1,并将第一个卷积核大小设置为7×7×1。

当CNN分类网络经过充分训练后,将一幅新图像输入网络以预测图像的类别。预测类意味着图像具有与训练数据集的同一类中的CSC相近的位置信息。为了获得与CSC位置信息相关的分类结果,CNN需要学习CSC的位置信息。不同类别的CSC的位置信息是分类的关键,因此不能引入常规数据扩充(随机扩展、随机裁剪和水平翻转)来增加训练数据集。为了提高粗定位网的精度,应用了加固训练数据集,如第4.1节所述。

3.2 精细定位网

基于粗定位网络,不同类别之间的尺度差异显著减小。根据分类结果和聚类结果,对从原始图像(带标签的建议区域)裁剪的子图像进行大小调整,并输入到精细定位网络中。为了满足速度和精度的要求,引入SSD框架【11】作为精细定位网络。

SSD框架由两部分组成,即基本网络层和额外功能层。基本网络是一种卷积网络,由于其速度快,可以将MobileNet网络作为基本网络。

额外特征层的核心思想是生成默认边界框,并基于上下特征映射预测默认框的类别。不同尺度的特征映射由不同大小的核卷积层生成。默认框在要素地图单元的每个位置以不同的纵横比(1 \/2、2等)生成。对于每个默认框,SSD预测13个类别(12个类别和背景)和四个形状偏移(x、y、w、a n和h)的置信度。对于包含m×n个单元和k种默认框的特征地图,该层的输出为(13+4)×m×n×k。最后,使用非最大值抑制(NMS)过滤带标签边界框的预测结果。

如图9所示,在应用MobileNet网络的默认SSD架构中,选择conv2d_ 11、conv2d_ 13、conv2d_ 14、conv2d_ 15、conv2d_ 16和conv2d_ 17作为输出层。最后五个输出层中每个单元格生成的默认框数为6,第一个为3。由于粗定位网络的存在,CSC的尺度差减小,目标通常很明显,占据了输入图像的主要部分。因此,可以删除比例过大或过小的默认框,以简化网络并加快识别速度。在改进的SSD体系结构中,conv2d_ 13、conv2d_ 14、conv2d_ 15和conv2d_ 16连接到损耗函数,conv2_ 13的深度更改为256以获得更统一的结构。随着额外要素图层的减少,默认框的数量从1917个减少到828个。

3.3 CSCNET

所提议的CSCNET的完整结构如图10所示。它由粗定位网和精定位网组成。粗定位网络是一个CNN分类网络,用于所有12类CSC的粗定位。无监督聚类算法为CNN分类网络提供训练数据集,并提供图像类和带有标签的建议区域之间的映射。当CNN分类网络经过充分训练后,将一幅调整大小的悬链线图像输入到卷积网络中,并预测43个类别的可信度。将具有最高置信度的类别标签指定给输入图像。根据类和建议区域之间的映射,生成12个CSC类别的粗定位结果,称为带标签的建议区域。

精细定位网络是一个目标检测卷积网络,用于所有12类CSC的精确定位结果。根据带有标签的建议区域,子图像从输入图像中裁剪并调整为300×300。然后,将调整大小的子图像输入到inceptionV2网络和额外的要素层。经过NMS后,可以得到精确的定位结果,包括每个子图像中12个类别的边界框和置信度。在一般框架中,根据置信阈值选择最终结果。在CSCNET中,在每个调整大小的子图像中仅选择一个边界框和类别。所选边界框类别应与粗定位网络生成的建议区域标签相同,且置信度应在其类别中最高。当所有建议区域都输入到精细定位网络时,将有与结果相同数量的精确边界框。最后,根据以下公式将精确的边界框映射回原始图像:

其中Wc和Hc是粗边界框的图像大小,xc和yc是原始接触网图像中粗边界框的最小坐标,x f和y f是粗边界框中精边界框的最小坐标,xresult和yresult是原始接触网图像中精边界框的最小坐标。

4.实验和结果

4.1 数据集

实验中使用的初始数据集是CSCs的图像,这些图像是由采集系统从中国大约1000公里的高速铁路线路上采集的。为了构建初始数据集,需要手动注释CSC的12个类别(见图1)。在2947幅悬链线图像中,共标记了20 121个组件。组件的每个类别实例都有各种比例和姿势。

根据第3.1节,粗定位网的数据集(实验中的inceptionV2)是由无监督聚类算法划分为43类的初始接触网数据集。由于分类任务的特殊性,通过亮度变化扩展数据集。为了提高粗定位网络的精度,首先读取注释文件,然后将接触网图像中CSCs的其他部分处理为黑色,形成增强的训练数据集。

根据第3.2节,精细定位网络的数据集(实验中改进的SSD框架)由初始接触网数据集和粗定位网络的数据集生成。在此数据集中,每个调整大小的子图像中都会有一个提取的边界框。

所提到的数据集如图11所示。表I给出了每个类别实例的数量。显然,数据集的不平衡性很严重,但分类网络没有受到影响,精细定位网络可以通过随机扩展、随机裁剪[11]和水平翻转操作。随机裁剪操作对少量训练样本尤其有效。

在每个数据集中,随机选择70%的实例作为训练样本,其余作为测试样本。为了避免过度拟合,从30%的训练样本中随机选择验证样本。

4.2 训练过程

实验环境描述如下:深度学习开源框架Tensorflow【19】、Ubuntu 16.04操作系统、23.5 GB RAM、Intel(R)Xeon(R)CPU E3-1225 v3,时钟为3.20 GHz,GTX 1080 Ti图形处理单元(GPU),内存为12 GB。

在整个训练过程中,首先基于增强数据集和粗定位网络的数据集对粗定位网络(inceptionV2)进行训练。接下来,基于精细定位网络的扩展数据集来训练精细定位网络(改进的SSD框架)。

在粗定位网络的训练过程中,采用梯度下降优化器最小化交叉熵的均值;学习速率最初设置为0.001,然后在5k迭代后以0.05的因子衰减。最大训练步数为250k。在精细定位网络的训练过程中,首先将学习率设置为0.004,然后在8k次迭代后以因子0.05衰减。动量优化器值和权重衰减分别设置为0.9和0.0005。其他规格和参数遵循Tensorflow slim中的原始配置。在我们的实验中,其他深度学习框架(更快的RCNN、SSD和YOLO)和传统图像算法(定向梯度直方图+一对一支持向量机)[20]也基于相同的接触网数据集进行训练。定位遵循默认设置。当损失函数停止下降时,经过20k次迭代得到训练后的模型。

4.3 结果和讨论

为了验证该方法的有效性,通过实验对该方法的平均精度(AP)和处理时间成本进行了评估。对真阳性(TP)、假阴性(FN)和假阳性(FP)进行计数,生成召回率和准确率等评价指标。召回用于衡量检测结果的完整性,而精度用于表示准确性。索引定义如下:

AP是精确回忆(PR)曲线下的面积。平均AP(mAP)是所有类别的平均精度。指数分别计算为(8)和(9),

其中N是类数。

通常测量每秒帧数(FPS)来计算处理时间成本,处理时间成本定义为训练模型在1秒内预测的图像数量。

1) 基于CSCs位置信息的无监督聚类算法:为了与提出的无监督聚类算法进行比较,对接触网数据集应用K-means,并将类数设置为43。采用Davies-Bouldin指数(DBI)来评价这两种算法的性能

其中k是聚类类的数量,w是聚类类的中心,®C是从点到聚类类中心的平均距离。两种算法的性能如表2所示。尽管K-means给出了聚类类的数量,但提出的算法仍然输出类内的较小距离和类间的较大距离。很明显,时间开销是该算法的一个缺点。然而,这部分中的时间成本并不是CSCNET的一个重要参数。当有一条新的铁路线时,该算法将仅离线使用一次来生成分类数据集。因此,它不会影响整体在线性能。

2) 粗定位网:粗定位网是CSCNET最重要的组成部分。它可以通过生成带有类别标签的建议区域来减小图像比例。经过增强数据集和粗定位网数据集的训练,接收v2可以达到88%的精度。根据表3,inceptionV2在不同的特征提取器网络中表现出良好的性能。在某些情况下,它仍然失败,如图12所示。潜在的原因是训练数据集无法包含类似的情况。

为了进一步处理分类网络的错误识别,将CSCNET和更快的R-CNN级联作为一种尝试。具体来说,首先应用粗定位网络,根据置信度结果判断是使用精细定位网络进行局部定位,还是使用更快的R-CNN进行全球定位。例如,当输入新的接触网图像时,粗定位网络将获得43类的置信度。如果背景置信度最高,则将接触网图像输入训练过的快速R-CNN中,直接定位CSCs。否则,提案区域将继续输入CSCNET。如表6最后一行所示,改进被证明是有效的,这也将增加定位时间。为了进一步处理分类网络的错误识别,将CSCNET和更快的R-CNN级联作为一种尝试。具体来说,首先应用粗定位网络,根据置信度结果判断是使用精细定位网络进行局部定位,还是使用更快的R-CNN进行全球定位。例如,当输入新的接触网图像时,粗定位网络将获得43类的置信度。如果背景置信度最高,则将接触网图像输入训练过的快速R-CNN中,直接定位CSCs。否则,提案区域将继续输入CSCNET。如表6最后一行所示,改进被证明是有效的,这也将增加定位时间。

3) 精细定位网络:在精细定位网络中,输入图像的大小比其他框架小得多,每幅图像对应一个类别标签,可以提高12类CSC的定位精度。绘制PR曲线以可视化不同定位算法的分类性能。根据图13,就小规模csc而言,精细定位网络的性能优于更快的R-CNN、YOLO和SSD。

为了验证修改后网络的有效性,在SSD的输出层上进行了多种选择。实验结果如表4所示。对于改进后的SSD,可以发现mAP没有下降太多,速度得到了显著提高。虽然单个修改后的SSD不会节省太多时间,但总体速度将显著提高,因为CSCNET需要多次使用修改后的SSD。

在SSD的原始结构中,输出层的深度分别为1024、256、256和256。从1024(第一层的深度)下降到256(第二层的深度),这太戏剧性了。因此,我们尝试减少第一输出层的深度。如表5所示,Conv2d\u 13的深度分别从1024更改为512、256和128。结果表明,深度为256的Conv2d\U 13结构在模型尺寸和FPS上略有改善,但对mAP没有影响。当深度被128个或更小的值替换时,特征提取过程不符合自底向上规则,mAP是不可接受的。修改深度是为了优化结构。

4) CSCNET:为了验证所提方法的有效性,使用884幅测试图像来评估训练模型的性能。图14显示了由CSCNET和其他深度学习模型生成的CSC的一些同步定位结果。AP、mAP和FPS用于评估每个模型的定位性能。表六总结了五种代表性模型的这三个指标。

与四种最先进的深度学习模型和传统的图像处理算法相比,所提出的CSCNET在mAP和FPS方面都表现得出奇地好。CSCNET比R-CNN更快。原因如下。首先,带有标签的建议区域直接由粗定位网络生成,这不同于快速R-CNN中的锚和RPN网络[7]。其次,每个图像生成的建议区域只有十几个,比其他图像生成的建议区域要少得多(通常为300个)。在CSCNET中,粗定位网络的成本为每幅图像0.098秒。对于精细定位网络,每个粗包围盒的成本为0.040秒,每个接触网图像的平均成本为0.460秒。

CSCNET的mAP最高为0.837,小尺度构件的APs显著提高,如支撑套筒螺钉、防风钢丝圈、支撑钢丝钩等。对于大型组件,例如绝缘子、绝缘子底座和支撑套管,CSCNET的性能与其他深度学习模型非常接近。

与传统的图像处理和其他深度学习模型相比,CSCNET的级联结构以及inceptionV2和改进的SSD的选择可以减少不同类别CSC之间的规模差异。同时,无监督聚类算法和粗定位网络可以提供比通过将类别标签添加到建议区域的其他框架更多的定位信息。

在CSCNET中,粗定位网络中的inceptionV2和精定位网络中的MobileNet都用于提取图像的深层非线性特征。它们可以被其他卷积网络代替,如VGG16、VGG300和MobileNet。表7总结了基于这些卷积网络的CSCNET测试结果。研究发现,不同的CNN结构可以从悬链线图像中学习不同的特征。这些模型的测试结果适用于不同的定位任务。例如,当模型需要部署在移动设备上时,可以选择基于MobileNet的CSCNET,因为它的检测速度和轻量级结构。此外,该检测结构还可以应用于其他类似的工业对象。

5.总结

本文提出了一种称为CSCNET的自动快速定位框架,用于12类CSC的定位。CSCNET由粗定位网络和精定位网络组成。为了减少接触网图像中不同CSC之间的多尺度差异,在粗定位网络中提出了基于CSC定位信息并结合CNN分类网络的无监督聚类算法。为了提高定位精度和速度,将改进的SSD框架应用于精细定位网络中。CSCNET的结构有利于CSCs的定位,因为它具有理想的计算时间和对多尺度差异的鲁棒性优势。总体而言,该方法在12类CSC的同时定位中显示出了良好的应用前景。小规模灵敏度的显著改善是CSCNET的特别亮点。低计算成本使电气化铁路的在线检测成为可能。尽管如此,今后仍需进行一些改进。对于从不同条件或环境中获取的数据集,如不同的悬臂结构和拍摄角度,该系统的适应性不够高,需要使用新的数据集在CSCNET中重新训练模型。

//本文仅作为日后复习之用,并无他用。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值