- 博客(3)
- 收藏
- 关注
原创 MapReduce论文总结
早期谷歌实现了许多种计算过程,例如处理大量的原始数据,计算许多种类的衍生数据等。这些计算过程大都数据数据量非常大,因此计算过程需要分布到数百台或数千台机器上进行,才能保证过程在一个合理时间内结束,而为了处理计算并行化、数据分发和错误处理通常代码都非常复杂。为了解决这一过程,设计了一种新的抽象,将涉及并行,容错性,数据分发和负载均衡的细节包装在一个库里,用户只需要编写简单的的Map函数和Reduce函数就可以轻松的将大量计算并行化,并具有容错性。
2022-10-10 01:31:18 794 1
原创 在Ubuntu下解决Redis主从复制无法连接问题
修改完redis.conf之后,发现从机master-link-status为down,主服务器看不到有连接。修改redis.conf和配置防火墙允许ip访问
2022-09-25 01:33:23 275
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人