Leetcode 304. 二维区域和检索 - 矩阵不可变 C++

Leetcode 304. 二维区域和检索 - 矩阵不可变

题目

给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。
在这里插入图片描述

上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。

示例:

给定 matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
说明:
  1. 你可以假设矩阵不可变。
  2. 会多次调用 sumRegion 方法。
  3. 你可以假设 row1 ≤ row2 且 col1 ≤ col2。

题解

动态规划
令dp[i][j]表示,以(0,0)为左上角,(i,j)为右下角的矩形的元素和。我们要求(x1,y1)、(x2,y2)的矩形元素和,只需要dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1]即可。考虑一下特殊情况,即x1、y1有取值为0的情况。详细过程见代码

代码

	vector<vector<long>> dp;
    NumMatrix(vector<vector<int>>& matrix) {
        if(matrix.empty() || matrix[0].empty()) return;
        int m=matrix.size(),n=matrix[0].size();
        dp = vector<vector<long>>(m,vector<long>(n,0));
        dp[0][0] = matrix[0][0];
        for(int i=1; i<n; i++) 
            dp[0][i] = dp[0][i-1] + matrix[0][i];
        for(int i=1; i<m; i++)
            dp[i][0] = dp[i-1][0] + matrix[i][0];
        for(int i=1; i<m; i++){
            for(int j=1; j<n; j++)
                dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + matrix[i][j];
        }
    }
    
    int sumRegion(int row1, int col1, int row2, int col2) {
        if(row1==0 && col1==0)  return dp[row2][col2];
        else if(row1 == 0)  return dp[row2][col2] - dp[row2][col1-1];
        else if(col1 == 0)  return dp[row2][col2] - dp[row1-1][col2];
        return dp[row2][col2] - dp[row2][col1-1] - dp[row1-1][col2] + dp[row1-1][col1-1];
    }

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/range-sum-query-2d-immutable
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值