Leetcode 304. 二维区域和检索 - 矩阵不可变
题目
给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:
给定 matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
说明:
- 你可以假设矩阵不可变。
- 会多次调用 sumRegion 方法。
- 你可以假设 row1 ≤ row2 且 col1 ≤ col2。
题解
动态规划
令dp[i][j]表示,以(0,0)为左上角,(i,j)为右下角的矩形的元素和。我们要求(x1,y1)、(x2,y2)的矩形元素和,只需要dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1]即可。考虑一下特殊情况,即x1、y1有取值为0的情况。详细过程见代码
代码
vector<vector<long>> dp;
NumMatrix(vector<vector<int>>& matrix) {
if(matrix.empty() || matrix[0].empty()) return;
int m=matrix.size(),n=matrix[0].size();
dp = vector<vector<long>>(m,vector<long>(n,0));
dp[0][0] = matrix[0][0];
for(int i=1; i<n; i++)
dp[0][i] = dp[0][i-1] + matrix[0][i];
for(int i=1; i<m; i++)
dp[i][0] = dp[i-1][0] + matrix[i][0];
for(int i=1; i<m; i++){
for(int j=1; j<n; j++)
dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + matrix[i][j];
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
if(row1==0 && col1==0) return dp[row2][col2];
else if(row1 == 0) return dp[row2][col2] - dp[row2][col1-1];
else if(col1 == 0) return dp[row2][col2] - dp[row1-1][col2];
return dp[row2][col2] - dp[row2][col1-1] - dp[row1-1][col2] + dp[row1-1][col1-1];
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/range-sum-query-2d-immutable
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。