Leetcode 764. 最大加号标志
题目
在一个大小在 (0, 0) 到 (N-1, N-1) 的2D网格 grid 中,除了在 mines 中给出的单元为 0,其他每个单元都是 1。网格中包含 1 的最大的轴对齐加号标志是多少阶?返回加号标志的阶数。如果未找到加号标志,则返回 0。
一个 k" 阶由 1 组成的“轴对称”加号标志具有中心网格 grid[x][y] = 1 ,以及4个从中心向上、向下、向左、向右延伸,长度为 k-1,由 1 组成的臂。下面给出 k" 阶“轴对称”加号标志的示例。注意,只有加号标志的所有网格要求为 1,别的网格可能为 0 也可能为 1。
k 阶轴对称加号标志示例:
阶 1:
000
010
000
阶 2:
00000
00100
01110
00100
00000
阶 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000
测试样例
示例 1:
输入: N = 5, mines = [[4, 2]]
输出: 2
解释:
11111
11111
11111
11111
11011
在上面的网格中,最大加号标志的阶只能是2。一个标志已在图中标出。
示例 2:
输入: N = 2, mines = []
输出: 1
解释:
11
11
没有 2 阶加号标志,有 1 阶加号标志。
示例 3:
输入: N = 1, mines = [[0, 0]]
输出: 0
解释:
0
没有加号标志,返回 0 。
提示:
- 整数N 的范围: [1, 500].
- mines 的最大长度为 5000.
- mines[i] 是长度为2的由2个 [0, N-1]中的数组成.
- (另外,使用 C, C++, 或者 C# 编程将以稍小的时间限制进行判断.)
题解
动态规划
dp[i][j] 表示以grid[i][j]为中心可以构成的最大加号标志。
我们假设从上往下,从下往上,从左往右,从右往左,连续1的个数为du,dd,dl,dr,那么阶数为min(du,dd,dl,dr),也就是所能形成的最大加号标志。
我们不妨按照从左往右,从右往左,从上往下,从下往上依次确定其最小值。详细过程见代码
代码
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) {
vector<vector<int>> grid(N,vector<int>(N,1));
for(int i=0; i<mines.size(); i++){
grid[mines[i][0]][mines[i][1]] = 0;
}
vector<vector<int>> dp(N,vector<int>(N,0));
int cnt;
for(int i=0; i<N; i++){
cnt = 0;
for(int j=0; j<N; j++){ //从左到右,也就是以grid[i][j]为中心,向左能有的连续1个数
if(grid[i][j] == 0){
dp[i][j] = 0;
cnt = 0;
}else{
dp[i][j] = ++cnt;
}
}
cnt = 0;
for(int j=N-1; j>=0; j--){ //从右到左,也就是以grid[i][j]为中心,向右能有的连续1个数。我们需要取最小值,也就是dp[i][j] = min(dp[i][j],++cnt);
if(grid[i][j] == 0){
dp[i][j] = 0;
cnt = 0;
}else{
dp[i][j] = min(dp[i][j],++cnt);
}
}
}
int ans=0;
for(int j=0; j<N; j++){
cnt = 0;
for(int i=0; i<N; i++){ //从上到下,也就是以grid[i][j]为中心,向上能有的连续1个数。我们需要取最小值,也就是dp[i][j] = min(dp[i][j],++cnt);
if(grid[i][j] == 0){
dp[i][j] = 0;
cnt = 0;
}else{
dp[i][j] = min(dp[i][j],++cnt);
}
}
cnt = 0;
for(int i=N-1; i>=0; i--){ //从下到上,也就是以grid[i][j]为中心,向下能有的连续1个数。我们需要取最小值,也就是dp[i][j] = min(dp[i][j],++cnt);
if(grid[i][j] == 0){
dp[i][j] = 0;
cnt = 0;
}else{
dp[i][j] = min(dp[i][j],++cnt);
ans = max(ans,dp[i][j]);
}
}
}
return ans;
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-plus-sign
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。