Leetcode 764. 最大加号标志 C++

Leetcode 764. 最大加号标志

题目

在一个大小在 (0, 0) 到 (N-1, N-1) 的2D网格 grid 中,除了在 mines 中给出的单元为 0,其他每个单元都是 1。网格中包含 1 的最大的轴对齐加号标志是多少阶?返回加号标志的阶数。如果未找到加号标志,则返回 0。

一个 k" 阶由 1 组成的“轴对称”加号标志具有中心网格 grid[x][y] = 1 ,以及4个从中心向上、向下、向左、向右延伸,长度为 k-1,由 1 组成的臂。下面给出 k" 阶“轴对称”加号标志的示例。注意,只有加号标志的所有网格要求为 1,别的网格可能为 0 也可能为 1。

k 阶轴对称加号标志示例:

阶 1:
000
010
000

阶 2:
00000
00100
01110
00100
00000

阶 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000

测试样例

示例 1:

输入: N = 5, mines = [[4, 2]]
输出: 2
解释:

11111
11111
11111
11111
11011

在上面的网格中,最大加号标志的阶只能是2。一个标志已在图中标出。

示例 2:

输入: N = 2, mines = []
输出: 1
解释:

11
11

没有 2 阶加号标志,有 1 阶加号标志。

示例 3:

输入: N = 1, mines = [[0, 0]]
输出: 0
解释:

0

没有加号标志,返回 0 。

提示:

  1. 整数N 的范围: [1, 500].
  2. mines 的最大长度为 5000.
  3. mines[i] 是长度为2的由2个 [0, N-1]中的数组成.
  4. (另外,使用 C, C++, 或者 C# 编程将以稍小的时间限制进行​​判断.)

题解

动态规划
dp[i][j] 表示以grid[i][j]为中心可以构成的最大加号标志。
我们假设从上往下,从下往上,从左往右,从右往左,连续1的个数为du,dd,dl,dr,那么阶数为min(du,dd,dl,dr),也就是所能形成的最大加号标志。
我们不妨按照从左往右,从右往左,从上往下,从下往上依次确定其最小值。详细过程见代码

代码

	int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) {
        vector<vector<int>> grid(N,vector<int>(N,1));
        for(int i=0; i<mines.size(); i++){
            grid[mines[i][0]][mines[i][1]] = 0;
        }
        vector<vector<int>> dp(N,vector<int>(N,0));        
        int cnt;
        for(int i=0; i<N; i++){
            cnt = 0;
            for(int j=0; j<N; j++){		//从左到右,也就是以grid[i][j]为中心,向左能有的连续1个数
                if(grid[i][j] == 0){
                    dp[i][j] = 0;
                    cnt = 0; 
                }else{
                    dp[i][j] = ++cnt;
                }
            }
            cnt = 0;
            for(int j=N-1; j>=0; j--){		//从右到左,也就是以grid[i][j]为中心,向右能有的连续1个数。我们需要取最小值,也就是dp[i][j] = min(dp[i][j],++cnt);
                if(grid[i][j] == 0){
                    dp[i][j] = 0;
                    cnt = 0; 
                }else{
                    dp[i][j] = min(dp[i][j],++cnt);
                }
            }
        }
        int ans=0;
        for(int j=0; j<N; j++){
            cnt = 0;
            for(int i=0; i<N; i++){				//从上到下,也就是以grid[i][j]为中心,向上能有的连续1个数。我们需要取最小值,也就是dp[i][j] = min(dp[i][j],++cnt);
                if(grid[i][j] == 0){
                    dp[i][j] = 0;
                    cnt = 0; 
                }else{
                    dp[i][j] = min(dp[i][j],++cnt);
                }
            }
            cnt = 0;
            for(int i=N-1; i>=0; i--){				//从下到上,也就是以grid[i][j]为中心,向下能有的连续1个数。我们需要取最小值,也就是dp[i][j] = min(dp[i][j],++cnt);
                if(grid[i][j] == 0){
                    dp[i][j] = 0;
                    cnt = 0; 
                }else{
                    dp[i][j] = min(dp[i][j],++cnt);
                    ans = max(ans,dp[i][j]);
                }
            }
        }
        return ans;
    }

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-plus-sign
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值