给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
- 解法一
中序遍历判断是否严格单调有序即可
class Solution {
long pre = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
return dfs(root);
}
public boolean dfs(TreeNode root){
//中序遍历判断是否递增
if(root==null) return true;
boolean flag1 = dfs(root.left);
//比较当前节点和前一个节点的大小,当前节点的大小是严格大于前一个节点的
//如果小于等于前一个节点,返回false
if(root.val<=pre){
return false;
}
else{
pre = root.val;
}
boolean flag2 = dfs(root.right);
return flag1&&flag2;
}
}
- 解法二
- 确定每个节点的取值范围,判断该节点是否在范围中,如果满足返回true,否则返回false.
- leetcode测试用例卡边界值,可以不管。明白算法思路即可
class Solution {
public boolean isValidBST(TreeNode root) {
return ValidBST(root,Long.MIN_VALUE,Long.MAX_VALUE);
}
public boolean ValidBST(TreeNode root,long min,long max){
//得到当前节点,和当前节点的正确区间
if(root==null) return true;
if(root.val<min||root.val>max) return false;
return ValidBST(root.left,min,root.val-1)&&ValidBST(root.right,root.val+1,max);
}
}