笔记本GTX1050(计算能力6.1)安装cuda11.0+cudnn8.2(for cuda 11.x)+pycharm tensorflow-gpu2.4.0错误排除

本文记录了在笔记本上安装CUDA11.0、CUDNN8.2和TensorFlow-GPU2.4.0过程中遇到的问题及解决方案。首先,安装CUDA时因Nsight Visual Studio Edition导致失败,通过自定义安装并避开Nsight组件解决了问题。其次,TensorFlow 2.5.0与CUDA11.0不兼容,降级到2.4.0rc4并在PyCharm中配置。最后,解决import TensorFlow时提示的XLA设备问题,但发现程序仍使用CPU运行,未充分利用GPU。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        我最先下载的是最新的cuda11.4.1以及tf-gpu2.5.0,后来因为觉得版本太高才降低了版本,这三者的版本对应很重要,比如tf2.5.0就不能用cuda11,我才降的级。

        这里主要说几个坑,截止到2021.8,最新的cuda11.4.1和tf2.5.0版本的最新对应可以看英伟达官网https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html查看驱动版本的支持,驱动版本在英伟达控制面板点击主页就能看见,点击左下角系统属性以及组件,则可以查看cuda支持版本,由于网上同类教程很多我就不放图了。这篇博客https://blog.csdn.net/K1052176873/article/details/114526086里面也有对应,比较新,最多到tensorflow2.4.0。

        安装过程不多赘述,主要讲我遇到的坑:首先,是cuda安装失败的问题,首先网络安装,不行,又换本地安装(大约3G),下了好几个版本,流量心疼。但是即使我的驱动足够支持版本,还是安装失败,我的情况是卡在Nsight Visual Studio Edition就失败了,看了看这个对我好像没用,于是就选“自定义”然后不安它不就好了,可是打开所有“加号”后发现并没有他,于是尝试多次后我把所有Nsight开头的全部去掉了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值