1.sklrearn中决策树的常用参数
DecisionTreeClassifier(criterion="gini",
splitter="best",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
class_weight=None,
presort=False)
**常用的参数:**
-
criterion:用来设置用信息熵还是用基尼系数计算。
-
splitter:指定分支模式
splitter=‘best’:表示选择最优的分裂策略。
splitter=‘random’:表示选择最好的随机切分策略。 -
max_depth:最大深度,防止过拟合
限定每个节点分支后子节点至少有多少个数据,否则就不分支
可以选择输入一个整数,默认为None,None表示树的深度不限,直到所有的叶子节点都是纯净的,即叶子节点所有的样本点都属于同一个类别。 -
min_samples_leaf:int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。