机器学习笔记:决策树

1.sklrearn中决策树的常用参数

DecisionTreeClassifier(criterion="gini",
splitter="best",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
class_weight=None,
presort=False)
**常用的参数:**
  • criterion:用来设置用信息熵还是用基尼系数计算。

  • splitter:指定分支模式
    splitter=‘best’:表示选择最优的分裂策略。
    splitter=‘random’:表示选择最好的随机切分策略。

  • max_depth:最大深度,防止过拟合
    限定每个节点分支后子节点至少有多少个数据,否则就不分支
    可以选择输入一个整数,默认为None,None表示树的深度不限,直到所有的叶子节点都是纯净的,即叶子节点所有的样本点都属于同一个类别。

  • min_samples_leaf:int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值