《机器学习by周志华》学习笔记-决策树-01

本书中的「决策树」有时指学习方法,有时指学得的树。

1、基本流程

1.1、概念

基本流程,亦称「判定树」

决策树(decision tree),是一种常见的机器学习方法。以二分类任务为例,我们希望从给定训练数据集学得一个模型,用以对新样例进行分离。

以二分类任务为例,可看作对「当前样本属于正类吗」这个问题的「决策」或「判定」过程。

1.2、目的

是为了产生一棵泛化能力强,即处理未见示例能力强的决策树。

1.3、基本流程

顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时一种很自然的处理机制。

例如,我们要对「这是好瓜吗」这样的问题进行决策时,通常会进行一系列的子判断或自决策,例如:

  • 他是什么颜色?>>青绿色
  •         它的根蒂是什么形态?>>蜷缩
  •                 它敲起来是什么声音?>>**
  •                         这是好瓜吗?>>好瓜

如下图所示:

显然,决策过程的最终结论对应了我们所希望的判定结果。例如:「是」或「不是」好瓜。

每个判定问题都是对某个属性的「测试」。例如:他是什么颜色?、它的根蒂是什么形态?

每个「测试结果」或是「导出最终结论」或是「导出进一步的判断问题」,其考虑范围是在上次决策结果的限定范围之内。例如:他是什么颜色?>>青绿色>>>它的根蒂是什么形态?

一般的,一颗决策树包含:

  • 一个根节点:包含样本全集
  • 若干个内部节点:对应一个属性测试
  • 若干个叶节点:对应决策结果

每个结点包含的样本集合根据属性测试的结果被划分到子结点中;从「根节点」到「每个叶节点」的路径对应了一个判定测试序列。

其基本流程遵循简单且直观的「分而治之(divide-and-conquer)」策略。如下所示:

   输入  

  • 训练集D=\left \{ (x_{1},y_{1}),(x_{2},y_{2}),...,(x_{m},y_{m}) \right \}
  • 离散属性集A=\left \{ A_{1},A_{2},...A_{n} \right \}
  • 每个属性对应属性值的样本个数为a_{i}^{1},a_{i}^{2},...,a_{i}^{V},其中最大样本个数用a_{i}^{max}表示

   过程  

  • 创建函数TreeGenerate(D,A_{i})
  • 创建节点node
  • if(D中样本全属于同一类别A_{i}
  •         thennode=A_{i}且为叶节点)
  •         return 情形(1)
  •  end if
  • ifA=\varnothing或任意样本类别个数a_{i}^{j}=a_{i}^{max}
  •         thennode为叶节点且标记为D中样本数量最多的类a_{i}^{max}
  •         return 情形(2)
  •  end if
  • A中选择最优划分属性A_{i}//最优划分属性将在下面「2、划分选择」说明
  • for  (A_{i}的每一个属性值用A_{i}^{v}表示)
  •         do(为node生成分支,令D_{i}^{v}表示D中在A_{i}上取值为A_{i}^{v}的样本子集)
  •                 ifD_{i}^{v}=\varnothing
  •                         then(分支节点=叶节点,类别为D中样本数量最多的类a_{i}^{max}
  •                         return 情形(3)
  •                         else(分支节点=TreeGenerate(D_{i}^{v},A\setminus \left \{ A_{i}^{v} \right \})
  •                 end if
  • end for

   输出  

  • 以node为根节点的一棵决策树

显然,决策树的生成是一个递归过程。

在决策树基本算法中,有3种情形会导致递归返回:

  • 情形(1):当前结点包含的样本属于同一类别,无需划分。
  • 情形(2):当前属性集为空,或是所有样本在所有属性上取值相同,无法划分。
  • 情形(3):当前结点包含的样本集合为空,不能划分。

在(2)情形下,我们把当前结点标记为叶节点,并将其类别设定为该结点所含样本最多的类别;

在(3)情形下,同样吧当前结点标记为叶节点,但将其类别设定为其父节点所含样本最多的类别。

注意这两种情形的处理实质不同:

  • 情形(2)是在利用当前结点的后验分布。
  • 情形(3)是把父节点的样本分布作为当前结点的先验分布。

2、划分选择

从上面的决策树「输入-过程-输出」的环节中我们可以知道,其中最重要也是需要研究的部分就是——最优划分属性。

本章主要的内容则是介绍了让「划分选择」最优的方法:

随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别。即节点的「纯度(Purity)」越来越高。

下面我们会介绍一些度量样本集合「纯度(Purity)」比较常用的指标,通过这些指标可以增加样本「纯度」,从而使「划分选择」更优。

2.1、信息增益

2.1.1、信息熵(Information Entropy)

信息熵」是度量样本「纯度」最常用的一种指标。

假设当前样本集:D=\left \{ \left ( x_{1},y_{1} \right ), \left ( x_{2},y_{2} \right ),..., \left ( x_{m},y_{m} \right ) \right \}的类别集合用Y表示:

Y=\left \{ Y_{1},Y_{2},...,Y_{k} \right \}

其中第Y_{j}(Y_{j}\in Y)类样本个数为y_{j}(1\leq y_{j}\leq m)\sum_{j=1}^{k}y_{j}=m,其所占比例用P_{j}(j=1,2,...,k)表示,则:

P_{j}=\frac{y_{j}}{m}

其离散属性集合用A表示:

A=\left \{ A_{1},A_{2},...,A_{n} \right \}  ,其中任意离散属性用A_{i}(A_{i}\in A)

则样本集D的「信息熵」定义为:

Ent(D)=-\sum_{j=1}^{k}P_{j}\times log_{2}^{P_{j}}

由于0< P_{j}\leq 1\sum_{j=1}^{k}P_{j}=1所以:

0< Ent(D)\leq \sum_{j=1}^{k}log_{2}^{P_{j}}Ent(D)越小,样本D的「纯度」越高。

2.1.2、信息增益(Information Gain)

假设离散属性A_{i}有V个可能的取值,分别用\left \{ A_i^{1},A_i^{2},...,A_i^{V} \right \}表示。若使用A_{i}来对样本集D进行划分,则会产生V个分支节点。其中第v个分支节点A_i^{v}包含了D中所有在属性A_{i}上取值为A_i^{v}的样本,该样本集合记为D_{i}^{v}(数据为i类别v值的样本集合)且其对应的样本数用a_{i}^{v}表示,则样本集合D_{i}^{v}的信息熵:

Ent(D_{i}^{v})=-\sum_{j=1}^{k}P_{j}\times log_{2}^{P_{j}}

考虑到不同分支节点所包含的样本数a_{i}^{v}不同,给分支结点赋予权重的规则定为:样本数越多的分支节点,影响越大。即a_{i}^{v}越大,影响越大。所以权重表示为:

g=\frac{\left | D_{i}^{v} \right |}{\left | D \right |}=\frac{a_{i}^{v}}{m}

则用属性A_{i}对样本D进行划分所获得的「信息增益(Information Gain)」为:

Gain(D,A_{i})=Ent(D)-\sum_{v=1}^{V}\frac{|D_{i}^{v}|}{|D|}Ent(D_{i}^{v})  

一般来说,信息增益Gain(D,A_{i})越大,则意味着使用属性A_{i}来进行划分数据集D获的的「纯度」越大。因此我们可以用信息增益来进行决策树的「划分属性选择」。也就是上面算法的属性选择。

f(A_{i})=\underset{A_{i}\in A}{argmax}Gain(D,A_{i})

上个式子就是求集合A=\left \{ A_{1},A_{2},...,A_{n} \right \}中所有类别的「信息增益」最大的属性公式。

较为著名的就是ID3(Iterative Dichotomiser,迭代二分器)决策树学习算法就是以「信息增益」为准则来选择划分属性。

案例:给出数据集D如下表(绿色文字是好瓜Y1,红色文字是坏瓜Y2)

西瓜数据集D
编号 色泽(A1) 根蒂(A2) 敲声(A3) 纹理(A4) 脐部(A5) 触感(A6) 是否好瓜(Y)
x1 青绿A_{1}^{1} 蜷缩A_{2}^{1} 浑浊A_{3}^{1} 清晰A_{4}^{1} 凹陷A_{5}^{1} 硬滑A_{6}^{1} 是Y1
x2 乌黑A_{1}^{2} 蜷缩A_{2}^{1} 沉闷A_{3}^{2} 清晰A_{4}^{1} 凹陷A_{5}^{1} 硬滑A_{6}^{1} 是Y1
x3 乌黑A_{1}^{2} 蜷缩A_{2}^{1} 浑浊A_{3}^{1}
  • 12
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vanilla698

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值