11-Alibaba微服务流控组件Sentinel实战上

Sentinel是阿里巴巴开源的一款轻量级的流量控制、熔断降级Java库,主要用于防止服务雪崩和系统保护。

限流过程与实现原理

Sentinel的限流主要是通过定义资源和规则来实现的。资源是对业务逻辑的抽象,规则定义了资源的访问限制。当一个请求到来时,Sentinel会检查请求的资源是否超过了预设的规则。如果超过了规则,Sentinel会根据策略进行限流,例如直接拒绝、排队等待或慢启动。

Sentinel的限流规则主要有以下几种:

  • QPS(每秒请求数):限制资源每秒的访问次数。
  • 线程数:限制资源的并发访问线程数。
  • 响应时间:当资源的平均响应时间超过阈值时,限制资源的访问。
  • 示例

以下是一个基于Sentinel的限流示例:

import com.alibaba.csp.sentinel.Entry;
import com.alibaba.csp.sentinel.SphU;
import com.alibaba.csp.sentinel.exception.BlockException;
import com.alibaba.csp.sentinel.slots.block.RuleConstant;
import com.alibaba.csp.sentinel.slots.block.flow.FlowRule;
import com.alibaba.csp.sentinel.slots.block.flow.FlowRuleManager;

import java.util.Collections;

public class SentinelDemo {
    public static void main(String[] args) {
        // 定义限流规则
        FlowRule rule = new FlowRule();
        rule.setResource("HelloWorld");
        rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
        rule.setCount(10);
        FlowRuleManager.loadRules(Collections.singletonList(rule));

        // 模拟请求
        while (true) {
            try (Entry entry = SphU.entry("HelloWorld")) {
                // 被保护的业务逻辑
                System.out.println("Hello World");
            } catch (BlockException e) {
                // 被限流的处理逻辑
                System.out.println("Blocked");
            }
        }
    }
}

在这个示例中,我们定义了一个名为"HelloWorld"的资源,并为它设置了一个QPS限流规则,限制每秒的访问次数为10。然后我们模拟了一个无限循环的请求,每次请求都会尝试进入"HelloWorld"资源。如果资源没有被限流,那么就执行业务逻辑(打印"Hello World");如果资源被限流,那么就执行被限流的处理逻辑(打印"Blocked")。

分布式系统遇到的问题
在一个高度服务化的系统中,我们实现的一个业务逻辑通常会依赖多个服务,比如:商品详情展示服务会依赖商品服务, 价格服务, 商品评论服务. 如图所示:
在这里插入图片描述
调用三个依赖服务会共享商品详情服务的线程池. 如果其中的商品评论服务不可用, 就会出现线程池里所有线程都因等待响应而被阻塞, 从而造成服务雪崩. 如图所示:
在这里插入图片描述
服务雪崩效应:因服务提供者的不可用导致服务调用者的不可用,并将不可用逐渐放大的过程,就叫服务雪崩效应
导致服务不可用的原因: 程序Bug,大流量请求,硬件故障,缓存击穿
【大流量请求】:在秒杀和大促开始前,如果准备不充分,瞬间大量请求会造成服务提供者的不可用。
【硬件故障】:可能为硬件损坏造成的服务器主机宕机, 网络硬件故障造成的服务提供者的不可访问。
【缓存击穿】:一般发生在缓存应用重启, 缓存失效时高并发,所有缓存被清空时,以及短时间内大量缓存失效时。大量的缓存不命中, 使请求直击后端,造成服务提供者超负荷运行,引起服务不可用。

在服务提供者不可用的时候,会出现大量重试的情况:用户重试、代码逻辑重试,这些重试最终导致:进一步加大请求流量。所以归根结底导致雪崩效应的最根本原因是:大量请求线程同步等待造成的资源耗尽。当服务调用者使用同步调用时, 会产生大量的等待线程占用系统资源。一旦线程资源被耗尽,服务调用者提供的服务也将处于不可用状态, 于是服务雪崩效应产生了。

解决方案
超时机制
在不做任何处理的情况下,服务提供者不可用会导致消费者请求线程强制等待,而造成系统资源耗尽。加入超时机制,
一旦超时,就释放资源。由于释放资源速度较快,一定程度上可以抑制资源耗尽的问题。

服务限流(资源隔离)
限制请求核心服务提供者的流量,使大流量拦截在核心服务之外,这样可以更好的保证核心服务提供者不出问题,对于一些出问题的服务可以限制流量访问,只分配固定线程资源访问,这样能使整体的资源不至于被出问题的服务耗尽,进而整个系统雪崩。那么服务之间怎么限流,怎么资源隔离?例如可以通过线程池+队列的方式,通过信号量的方式。如下图所示, 当商品评论服务不可用时, 即使商品服务独立分配的20个线程全部处于同步等待状态,也不会影响其他依赖服务的调用。
在这里插入图片描述
服务熔断
远程服务不稳定或网络抖动时暂时关闭,就叫服务熔断。
现实世界的断路器大家肯定都很了解,断路器实时监控电路的情况,如果发现电路电流异常,就会跳闸,从而防止电路被烧毁。

软件世界的断路器可以这样理解:实时监测应用,如果发现在一定时间内失败次数/失败率达到一定阈值,就“跳闸”,断路器打开——此时,请求直接返回,而不去调用原本调用的逻辑。跳闸一段时间后(例如10秒),断路器会进入半开状态,这是一个瞬间态,此时允许一次请求调用该调的逻辑,如果成功,则断路器关闭,应用正常调用;如果调用依然不成功,断路器继续回到打开状态,过段时间再进入半开状态尝试——通过”跳闸“,应用可以保护自己,而且避免浪费资源;而通过半开的设计,可实现应用的“自我修复“。

所以,同样的道理,当依赖的服务有大量超时时,在让新的请求去访问根本没有意义,只会无畏的消耗现有资源。比如我们设置了超时时间为1s,如果短时间内有大量请求在1s内都得不到响应,就意味着这个服务出现了异常,此时就没有必要再让其他的请求去访问这个依赖了,这个时候就应该使用断路器避免资源浪费。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值