牛客寒假算法基础集训营4
题目链接:https://ac.nowcoder.com/acm/contest/3005?&headNav=www
文章目录
A 欧几里得
题意:已知 gcd(a,b) 共递归了 n次,求所有可能的a,b中满足a>b>=0且a+b最小的一组的a与b之和。
思路:将a,b设为0,1,通过模拟反向的GCD()n次,得到最小的a和b。
也可以通过找规律得到从n=0开始a,b的取值为0,1,1,2,3,5…是一个斐波那契数列。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const long long mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int e = 3e7 + 5;
int main()
{
int t;
cin >> t;
while(t--){
int n;
cin >> n;
ll a = 1, b = 0;
//a,b,temp要开long long ,不然会超时。。。。。
while(n--){
while(b <= a){//求出b>a时的最小值
b += a;
}
ll temp = a;
a = b;
b = temp;
}
cout << a + b << endl;
}
return 0;
}
B 括号序列
题意:判断括号序列是否合法
空串是一个合法的括号序列
如果A, B 都是合法的括号序列,那么AB也是合法的括号序列
如果A是合法的括号序列,(A) , [A], {A}都是合法的括号序列
思路:栈模拟
如果是左括号,那么入栈,然后继续读下一个括号
如果是右括号,那么就要看这个右括号和栈顶的括号是否匹配
如果匹配,那么弹出栈顶的括号,继续读下一个括号,否则说明不合法
最后,如果栈为空,说明此括号序列是合法的。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const long long mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int e = 1e6 + 5;
char s2[e];
int main()
{
string s1;
int n, num = 0;
cin >> s1;
n = s1.size();
int flag = 1;
for(int i = 0; i < n; i++){
if(s1[i] == '(' || s1[i] == '[' || s1[i] == '{'){
s2[num] = s1[i];
num++;
}
else{
if(num == 0 || (s1[i] == ')' && s2[num - 1] != '(') || (s1[i] == ']' && s2[num - 1] != '[') || (s1[i] == '}' && s2[num - 1] != '{')){
flag = 0;
break;
}
num--;
}
}
if(num != 0) flag = 0;
if(flag == 1) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}
F 树上博弈
现有一个 n 个点,n-1条边组成的树,其中 1 号点为根节点。两个人玩游戏,他们开始时在不同节点上,他们只能走到没有人的空节点上。如果谁移动不了,就输掉了游戏。起点是随机的,问先手走的人,有多少种起点不同的方式可以获胜。
答案取决于距离的奇偶性:如果是偶数,则先手获胜,否则后手获胜。
首先,注意到输掉的唯一方法是自己的唯一一条边有另一个人,那么自己一定是在叶子上。
令两个人之间的距离为D。请注意,每人行动后D增加1或减少1。 因此,每有人走一步D的奇偶性都会改变。如果距离为偶数,则他们不在相邻的单元格中,并且先手始终可以移动。因此他可以向后手的方向移动,将后手必然会最终移动到叶子上。同样,如果最初距离是奇数,则后手获胜。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const long long mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const double PI = 3.141592;
const int e = 1e6 + 5;
int n, q, x, y, depth[e];
ll cnt[2];
int main()
{
cin >> n;
depth[1] = 0;
cnt[0] = 1;
for(int i = 2; i <= n; i++){
int c;
cin >> c;
depth[i] = depth[c] ^ 1;
cnt[depth[i]] += 1;
}
cout << cnt[0] * (cnt[0] - 1) + cnt[1] * (cnt[1] - 1) << endl;
return 0;
}