最佳匹配问题-KM算法

KM算法是在最大匹配基础上考虑边权,寻找二分图中匹配边权和最大的解决方案。介绍了一个详细的KM算法入门资源,解释了算法思路:初始化时,左节点赋最大边权,右节点赋0。通过匈牙利算法匹配,冲突时调整边权直至找到匹配。应用实例为HDU2255题目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最佳匹配时在最大匹配的基础上,在二分图上增加边权,求出匹配边权和的最大值。
在这里插入图片描述
这里详细的讲解放这个链接km算法入门
大概思路就是加入左边点的点权(等于最大边权),右边点边权为0,当左右点的边权和等于边权则可以匹配。每次按照匈牙利匹配,当发生冲突时,匈牙利撤回到最后一个点没有可以匹配的边时,左边点边权降低1,右边点边权增加1。再次匹配,若是不可以,继续+1,-1,直到匹配上

HDU2255

#include<iostream>
#include<vector>
#include<string.h>
#include<algorithm>
#include<stdio.h>
using namespace std;
const int N=302;
const int inf=1e6;
int g[N][N], used[N],rela[N];
int n;
int topx[N],topy[N],usex[N],usey[N],slack[N];
bool find(int x){
   
    usex[x]=1;                //标记参与 
    for(int i=1;i<=n;i++){
       
        if(usey[i]==1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值