- 博客(23)
- 资源 (3)
- 收藏
- 关注
原创 2021-07-15多台服务器通过路由器同时联网
多台服务器通过路由器同时联网如果只有一个网口,而又同时有多台服务器需要联网,这时就只能通过一个路由器的多个lan口来实现这时,所有的服务器的IP都是路由器的ip,只能通过设置不同的端口号来区分。首先需要在服务器端通过命令修改ssh服务的端口号(默认为22)一、找到ssh配置文件位置vim /etc/ssh/sshd_config二、修改ssh登录端口号修改 port 22 为 port xxxx三、重启ssh服务/etc/init.d/ssh restart然后再在路由器端实现端口映射
2021-07-15 20:22:18 631
原创 解决已经安装好anaconda但【Ubuntu】conda: command not found解决办法
安装anaconda时候要修改默认路径,否则会安装到当前用户名底下的文件夹,导致其他用户无法使用bash Anacondaxxxxx.bash -p PATH -u #PATH:为自定义的路径,我的为 /usr/local/eg:sudo bash Anaconda3-5.0.1-Linux-x86_64.sh -p /opt/Anaconda/ -u在etc/profile下添加anaconda路径vim /etc/profileexport PATH=/opt/Anaconda3/b
2021-07-15 19:58:15 1547
原创 Ubuntu下新磁盘挂载,vim命令说明
Ubuntu下新磁盘挂载对新磁盘处理就是先分区,再格式化,再挂载https://blog.csdn.net/wshixinshouaaa/article/details/81275608使用fdisk -l查看是否分区成功,同时记住名字不要用后面挂载方法,用下面这个磁盘挂载的方法,注意磁盘的名称https://blog.csdn.net/ytusdc/article/details/83621489改完之后reboot如果修改哪个文件改错了 会导致无法进入界面,这时再vim进入刚才的文件,把添
2021-07-15 19:34:50 230
原创 Python读取及保存mat文件 注意事项
**Python读取及保存mat文件**在说明python读取mat文件之前需要强调2点:读取的时候需要注意读出来的shape是什么样的,是否符合自己的预期,如果shape不是自己预期的那样,就需要用np.transpose(mat, [x, x, x])进行修正。读取的时候需要注意取值范围,也就是最大值,因为在作为训练数据的时候需要首先进行归一化(避免无法收敛),而不同的mat文件的最大值是不一样的,有0-1、0-255、0-212、0-216。python实现mat文件的读取主要有3个函
2021-05-05 21:02:34 3741
原创 TypeError: new() received an invalid combination of arguments-got(float, int)
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/zhangboshen/anaconda3/lib/python3.6/site-packages/torch/nn/modules/linear.py", line 48, in __init__ self.weight = Parameter(torch.Tensor(out_features, in
2021-04-06 09:57:20 1634
原创 OSError: Unable to open file (file signature not found)
原因:可能是在用matlab保存.mat文件时用的版本较老的matlab,可能需要在保存时后面加上’.v7.0’(在网上再查查)最好改用scrpy
2021-01-20 17:33:19 1517
原创 OSError: could not read bytes
在使用scipy读取.mat文件时可能会出现的错误。解决方法:有可能是上传文件时出错,重新上传一次即可。
2021-01-20 17:26:35 2720 3
原创 dim的理解
eg.a = torch.randn((3,4,5))b = a.max(dim=0)可以值么理解,固定这一个维度,比如现在是dim=0,这三个红框里面的部分不动,如红色箭头所示,移动整个块,进行比较或者其它操作。输出维度:(1,4,5)dim=1也是一样的输出维度:(3,1,5)最后的结果是将该维度变成1,其余不变。...
2020-12-23 11:09:45 3565 1
原创 训练阶段net.train()&&测试阶段net.eval()的作用
net.train()在训练模型时需要在前面加上。net.eval()在非训练的时候是需要加的,没有这句代码,一些网络层的值会发生变动,不会固定,神经网络每一次生成的结果也是不固定的,如droupout层和BN层,生成质量可能好也可能不好。...
2020-12-22 19:15:03 5755
原创 Pytorch可视化(显示图片)及格式转换
读取RGB文件:matplotlibimport matplotlib.image as mpimg # mpimg 用于读取图片lena = mpimg.imread('lena.png')cv2import cv2# cv2.imread()接口读图像,读进来直接是BGR 格式数据格式在 0~255,通道格式为(W,H,C)img_BGR = cv2.imread('D:/Desktop/lena.jpg')rgb = cv2.cvtColor(rgb, cv2.COLOR_
2020-12-20 18:43:14 10618 3
原创 Linux服务器跑深度学习的基础代码
Linux 通过命令行关闭进程 ps -u %显示该用户所有进程的PID号 kill 9 PID %杀死该进程通过后台运行python程序 nohup python main.py > myout.file 2>&1 &^C
2020-12-18 23:28:58 2177 1
原创 使用Python、Matlab加载数据&保存数据
Pythondata_path = r’C:\Users\Administrator\Desktop\NTIRE2020_Validation_RealWorld’如果不加“r”就会报错,加了“r”之后加载数据时会将“\”自动转成“\”(使用复制地址就会这样)‘C:/Users/Administrator/Desktop/NTIRE2020_Validation_RealWorld’这样写不报错,加了“r”也不会错所以建议前面加“r”data_path = ‘./Dataset/V
2020-12-12 17:37:01 498
原创 配置GPU
os.environ[“CUDA_DEVICE_ORDER”] = “PCI_BUS_ID” #按照PCI_BUS_ID顺序从0开始排列GPU设备os.environ[“CUDA_VISIBLE_DEVICES”] = “0”#设置当前使用的GPU设备仅为0号设备 设备名称为’/gpu:0’os.environ[“CUDA_VISIBLE_DEVICES”] = “1” #设置当前使用的GPU设备仅为1号设备,设备名称为’/gpu:0’os.environ[“CUDA_VISIB..
2020-12-12 16:24:18 703
原创 pytorch中设置不同的学习率
pytorch中为不同子网络设置不同的学习率首先定义一个LeNet网络import torchimport torch.nn as nnfrom torch import optimclass Net(nn.Module): def __init__(self): super(Net, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 6, 5),
2020-11-25 16:25:09 1561
原创 pytroch调试时显示网络中的变量大小或具体数值
pytroch调试是显示网络中的变量大小或具体数值首先设置断点,打开调试窗口。在这里插入代码片这个时候想看各个变量的具体值是多少,直接输入conv1.parameter是没有显示的:需要这样:for name, para in self.conv1.named_parameters(): #net.conv1.named_parameters(): print(name, para.size())...
2020-11-25 15:00:36 175
原创 pytorch中unsqueeze和queeze函数的使用
pytorch中unsqueeze和queeze函数的使用直接上代码:import torcha = torch.randn([1,2,3])print(a.shape)a = a.squeeze(0) #这里注意一定要重新赋值 #在第“0”维增加一个维度的数据print(a.shape)torch.Size([1, 2, 3])torch.Size([2, 3])所以看得出来tensor.squeeze()的作用就是减少一个维度,但要注意一个问题,只能删减维度大小为1的一
2020-11-25 14:05:06 1210
原创 基于GIS的校园公交车管理系统设计(西安电子科技大学GIS课程大作业)
基于GIS的校园公交车管理系统设计一、任务通过信息网络将现实校园的各种信息收集,整理,归纳,存储,分析和优化,进而对校园的教学资源,校园环境等方面的实体和现象进行模拟,仿真,表现,分析和深入认识。为了方便大学生在校内的出行,许多学校都建立了校内公交车系统,然而该系统的有效管理却成了一大难题,表现在如何选取行驶路线、乘坐站点以及时间表。为了解决以上难题,改善服务质量以及提高校园公交车的效率,以西安电子科技大学校内公交车为实验对象,通过采集和分析数据,实地考察以及综合分析,借助GIS以及其他软件平台,设计
2020-11-24 13:26:51 6285 1
原创 使用TI的MSP430实现PWM驱动。(西安电子科技大学综合应用开发实验作业5)
题目要求:目标:设计一个电风扇控制系统,要求能够通过PWM调节风扇的转速。要求:讨论控制方案,完成单片机PWM驱动。如果大作业没有相关控制算法设计部分,则需要单独完成此部分内容;如果大作业中包含相关部分,则只需提交这部分内容的作为平时作业。平台:MSP430,MCS51,STM32等皆可。分析:pwm就是一定占空比的信号,可以利用delay函数实现高电平和低电平的持续时间。以下是使用energia开发环境的代码。const int LED1 = P1_0;const int LED2 =
2020-11-21 12:31:03 1971 1
原创 使用TI的MSP430实现完成单片机定时和中断相关设计。(西安电子科技大学综合应用开发实验任务3)
题目要求:目标:反应检测系统(打地鼠), 设计一个反应检测系统,N个LED指示灯(或者数码管)分别对应N个按键,在指示灯亮的时间t内按下对应按键就算命中,此时指示灯熄灭,否则算miss。要求:完成单片机定时和中断相关设计。如果大作业没有相关设计部分,则需要单独完成此部分内容;如果大作业中包含相关部分,则只需提交这部分内容的作为平时作业。平台:MSP430,MCS51,STM32等皆可。分析:该任务需要一个记录时间的变量,然后判断是否在5s内摁下按键,及时摁下则红灯亮,绿灯灭;没有在5s内摁下则绿灯
2020-11-21 12:26:34 1855 1
原创 使用TI的MSP430实现一个单片机与上位机的数传系统。(西安电子科技大学综合应用开发实验)
题目要求:目标:智能控制系统——利用单片机(开发平台任选),设计并编程实现一个单片机与上位机的数传系统。要求:对单片机和PC/手机/单片机之间的通信进行设计。如果大作业没有设计通信部分,则需要单独完成此部分内容;如果大作业中包含通信部分,则只需提交这部分内容的作为平时作业。平台:MSP430,MCS51,STM32等皆可。分析:可以使用energia自带的串口函数,当按键摁下时,串口监视器显示‘A’,当PC端发送字符‘g’/‘G’,开发板的绿灯亮;发送字符‘r’/‘R’,开发板的红灯亮;从而实现
2020-11-21 12:20:00 1820 1
原创 如何使用TI的MSP430开发板(管脚配置、软件使用)(西安电子科技大学综合应用开发实验)
使用TI的MSP430开发板的注意事项这学期有一门综合应用开发实验,需要用到MSP430G2553这块卡发板进行一些小任务。关于开发环境,官方给出的建议是使用CCS(Code Composer Studio)或者是IAR软件,但博主墙裂建议,如果只是为了完成这一课程的任务,推荐使用[Energia],(https://energia.nu/download/)用过Arduino的人都知道该软件的方便之处,示例丰富,串口调用方便,使用简单等等优点。唯一不好的一点就是太简单了,不能调试,没有代码补齐。
2020-11-21 12:11:02 2449 2
原创 nn.ReLU和nn.functional.relu有什么区别
nn.ReLU和nn.functional.relu有什么区别其中nn.ReLU作为一个层结构,必须添加到nn.Module容器中才能使用class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = n
2020-11-20 15:23:24 3882
原创 Pytorch显示一个Tensor类型的图片数据
Pytorch显示一个Tensor类型的图片数据import torchfrom torchvision.transforms import ToPILImageshow = ToPILImage() # 可以把Tensor转成Image,方便可视化pic=torch.randn(3, 500, 500)ToPILImage()(pic).show()显示效果
2020-11-19 18:12:55 8230
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人