最大子数组和四种实现

暴力枚举

 /**
     * 暴力枚举的方式 时间复杂度O(n^3)
     *
     * @param array 输入
     * @return 最大子数组的和的值
     */
    public static int forceMaxSubArray(int[] array) {
        int lenght = array.length;
        int maxvalue = Integer.MIN_VALUE;
        for (int i = 0; i < lenght; i++) {
            for (int j = i; j < lenght; j++) {
                int sum = 0;
                for (int k = i; k <=j; k++) {
                    sum += array[k];
                }
                if (sum > maxvalue) {
                    maxvalue = sum;
                }
            }
        }
        return maxvalue;
    }

优化的暴力枚举

 /**
     * 优化的暴力枚举 时间复杂度O(n^2)
     *
     * @param array 输入
     * @return 最大子数组的和的值
     */
    public static int optimizeForceSubArray(int[] array) {
        int lenght = array.length;
        int maxvalue = Integer.MIN_VALUE;
        for (int i = 0; i < lenght; i++) {
            int sum = 0;
            for (int j = i; j < lenght; j++) {
                // 保存 j 前面的子数组和 避免重复计算
                sum += array[j];
                if (sum > maxvalue) {
                    maxvalue = sum;
                }
            }
        }
        return maxvalue;
    }

分治法

/**
     * 分治法 时间复杂度 O(n*log^n)
     *
     * @param array 输入
     * @param left  左边界
     * @param right 右边界
     * @return 最大子数组的值
     */
    public static int divideMaxSubArray(int[] array, int left, int right) {
        if (left == right) {
            return array[left];
        } else {
            int mid = (left + right) / 2;
            // 左半边最大子数组和
            int leftMaxValue = divideMaxSubArray(array, left, mid);
            // 右半边最大子数组和
            int rightMaxValue = divideMaxSubArray(array, mid + 1, right);
            // 跨中间的最大子数组和
            int midMaxValue = crossMidValue(array, left, right);
            return max(leftMaxValue, rightMaxValue, midMaxValue);
        }
    }

    /**
     * 计算跨中间点的最大数组
     *
     * @param array 输入
     * @param left  左边界
     * @param right 右边界
     * @return 跨中间节点最大子数组的值
     */
    private static int crossMidValue(int[] array, int left, int right) {

        int leftValue = Integer.MIN_VALUE;
        int mid = (left + right) / 2;
        int sum = 0;
        /*
         * 这里左边的范围必须和上面一样 left ~ mid
         */
        for (int i = mid ; i >= left; i--) {
            // 记录下每次累加的数组和
            sum += array[i];
            // 如果更大就更新
            if (sum > leftValue) {
                leftValue = sum;
            }
        }
        int rightValue = Integer.MIN_VALUE;
        sum = 0;
     	/*
         * 这里左边的范围必须和上面一样 mid+1 ~ right
         */
        for (int i = mid + 1; i <= right; i++) {
            // 记录下每次累加的数组和
            sum += array[i];
            // 如果更大就更新
            if (sum > rightValue) {
                rightValue = sum;
            }

        }
        // 返回跨越中间的最大数组值 ------ 左边加右边
        return leftValue + rightValue;
    }

    /**
     * 返回三个数的最大值
     *
     * @param leftMaxValue  左数组的最大值
     * @param rightMaxValue 右数组最大值
     * @param midMaxValue   跨中间的最大值
     * @return 最大值
     */
    private static int max(int leftMaxValue, int rightMaxValue, int midMaxValue) {
        return Math.max(Math.max(leftMaxValue, rightMaxValue), midMaxValue);
    }

动态规划

 /**
     * 动态规划 时间复杂度O(n)
     * @param array 输入的数组
     */
    private static void getSumOfSubArray05(int[] array) {
        int n = array.length;
        // 保存最大子数组的和
        int[] ev = new int[n];
        // 保存最大子数组的起始下标
        int[] iv = new int[n];
        // 最大子数组的结束下标
        int endIndex = Integer.MIN_VALUE;
        int  max = Integer.MIN_VALUE;
        //初始化
        ev[0] = array[0];
        iv[0] = array[0];
        ev[n - 1] = array[n - 1];
        for (int i = 1; i < n; i++) {
            if (ev[i - 1] + array[i] > array[i]){
                ev[i] = ev[i - 1] + array[i];
                iv[i] = iv[i - 1];
            }else {
                ev[i] =  array[i];
                iv[i] = i;
            }
            if (ev[i] > max){
                max = ev[i];
                endIndex = i;
            }
        }

        System.out.println(Arrays.toString(ev));
        // 取出数组中最大的数
        System.out.println("最大子数组之和为:" + Arrays.stream(ev).max().getAsInt());
        System.out.println("范围是:["+iv[endIndex]+"~"+endIndex+"]");
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值