文章目录
前言
数据结构和算法笔记
一、给定一棵二叉树的头节点head,返回这颗二叉树是不是平衡二叉树
public static boolean isBalanced2(Node head) {
return process(head).isBalanced;
}
public static class Info{
public boolean isBalanced;
public int height;
public Info(boolean i, int h) {
isBalanced = i;
height = h;
}
}
public static Info process(Node x) {
if(x == null) {
return new Info(true, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isBalanced = true;
if(!leftInfo.isBalanced) {
isBalanced = false;
}
if(!rightInfo.isBalanced) {
isBalanced = false;
}
if(Math.abs(leftInfo.height - rightInfo.height) > 1) {
isBalanced = false;
}
return new Info(isBalanced, height);
}
二、给定一棵二叉树的头节点head,任何两个节点之间都存在距离,返回整棵二叉树的最大距离
public static int maxDistance2(Node head) {
return process(head).maxDistance;
}
public static class Info {
public int maxDistance;
public int height;
public Info(int m, int h) {
maxDistance = m;
height = h;
}
}
public static Info process(Node x) {
if (x == null) {
return new Info(0, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
int p1 = leftInfo.maxDistance;
int p2 = rightInfo.maxDistance;
int p3 = leftInfo.height + rightInfo.height + 1;
int maxDistance = Math.max(Math.max(p1, p2), p3);
return new Info(maxDistance, height);
}
三、给定一棵二叉树的头节点head,返回这颗二叉树中最大的二叉搜索子树的头节点
public static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int value) {
val = value;
}
}
// 提交如下的largestBSTSubtree方法,可以直接通过
public static int largestBSTSubtree(TreeNode head) {
if (head == null) {
return 0;
}
return process(head).maxBSTSubtreeSize;
}
public static class Info {
public int maxBSTSubtreeSize;
public int allSize;
public int max;
public int min;
public Info(int m, int a, int ma, int mi) {
maxBSTSubtreeSize = m;
allSize = a;
max = ma;
min = mi;
}
}
public static Info process(TreeNode x) {
if (x == null) {
return null;
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int max = x.val;
int min = x.val;
int allSize = 1;
if (leftInfo != null) {
max = Math.max(leftInfo.max, max);
min = Math.min(leftInfo.min, min);
allSize += leftInfo.allSize;
}
if (rightInfo != null) {
max = Math.max(rightInfo.max, max);
min = Math.min(rightInfo.min, min);
allSize += rightInfo.allSize;
}
int p1 = -1;
if (leftInfo != null) {
p1 = leftInfo.maxBSTSubtreeSize;
}
int p2 = -1;
if (rightInfo != null) {
p2 = rightInfo.maxBSTSubtreeSize;
}
int p3 = -1;
boolean leftBST = leftInfo == null ? true : (leftInfo.maxBSTSubtreeSize == leftInfo.allSize);
boolean rightBST = rightInfo == null ? true : (rightInfo.maxBSTSubtreeSize == rightInfo.allSize);
if (leftBST && rightBST) {
boolean leftMaxLessX = leftInfo == null ? true : (leftInfo.max < x.val);
boolean rightMinMoreX = rightInfo == null ? true : (x.val < rightInfo.min);
if (leftMaxLessX && rightMinMoreX) {
int leftSize = leftInfo == null ? 0 : leftInfo.allSize;
int rightSize = rightInfo == null ? 0 : rightInfo.allSize;
p3 = leftSize + rightSize + 1;
}
}
return new Info(Math.max(p1, Math.max(p2, p3)), allSize, max, min);
}
四、派对的最大快乐值
员工信息的定义如下:
class Employee {
public int happy; // 这名员工可以带来的快乐值
List subordinates; // 这名员工有哪些直接下级
}
派对的最大快乐值
公司的每个员工都符合 Employee 类的描述。整个公司的人员结构可以看作是一棵标准的、 没有环的多叉树。树的头节点是公司唯一的老板。除老板之外的每个员工都有唯一的直接上级。 叶节点是没有任何下属的基层员工(subordinates列表为空),除基层员工外,每个员工都有一个或多个直接下级。
public static class Info {
public int no;//直接下级不来的happy信息
public int yes;//直接下级来的情况下happy的信息
public Info(int n, int y) {
no = n;
yes = y;
}
}
public static Info process(Employee x) {
if (x == null) {
return new Info(0, 0);
}
int no = 0;
int yes = x.happy;
for (Employee next : x.nexts) {
Info nextInfo = process(next);
no += Math.max(nextInfo.no, nextInfo.yes);
yes += nextInfo.no;
}
return new Info(no, yes);
}
五、二叉树的递归套路
1)假设以X节点为头,假设可以向X左树和X右树要任何信息
2)在上一步的假设下,讨论以X为头节点的树,得到答案的可能性(最重要)
3)列出所有可能性后,确定到底需要向左树和右树要什么样的信息
4)把左树信息和右树信息求全集,就是任何一棵子树都需要返回的信息S
5)递归函数都返回S,每一棵子树都这么要求
6)写代码,在代码中考虑如何把左树的信息和右树信息整合出整棵树的信息
可以通过x使用不使用来进行分情况处理。
六、给定一棵二叉树的头节点head,返回这颗二叉树是不是满二叉树
public static Info1 process1(Node head) {
if (head == null) {
return new Info1(0, 0);
}
Info1 leftInfo = process1(head.left);
Info1 rightInfo = process1(head.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
int nodes = leftInfo.nodes + rightInfo.nodes + 1;
return new Info1(height, nodes);
}
七、给定一棵二叉树的头节点head,返回这颗二叉树中最大的二叉搜索子树的头节点
// 每一棵子树
public static class Info {
public Node maxSubBSTHead;
public int maxSubBSTSize;
public int min;
public int max;
public Info(Node h, int size, int mi, int ma) {
maxSubBSTHead = h;
maxSubBSTSize = size;
min = mi;
max = ma;
}
}
public static Info process(Node X) {
if (X == null) {
return null;
}
Info leftInfo = process(X.left);
Info rightInfo = process(X.right);
int min = X.value;
int max = X.value;
Node maxSubBSTHead = null;
int maxSubBSTSize = 0;
if (leftInfo != null) {
min = Math.min(min, leftInfo.min);
max = Math.max(max, leftInfo.max);
maxSubBSTHead = leftInfo.maxSubBSTHead;
maxSubBSTSize = leftInfo.maxSubBSTSize;
}
if (rightInfo != null) {
min = Math.min(min, rightInfo.min);
max = Math.max(max, rightInfo.max);
if (rightInfo.maxSubBSTSize > maxSubBSTSize) {
maxSubBSTHead = rightInfo.maxSubBSTHead;
maxSubBSTSize = rightInfo.maxSubBSTSize;
}
}
if ((leftInfo == null ? true : (leftInfo.maxSubBSTHead == X.left && leftInfo.max < X.value))
&& (rightInfo == null ? true : (rightInfo.maxSubBSTHead == X.right && rightInfo.min > X.value))) {
maxSubBSTHead = X;
maxSubBSTSize = (leftInfo == null ? 0 : leftInfo.maxSubBSTSize)
+ (rightInfo == null ? 0 : rightInfo.maxSubBSTSize) + 1;
}
return new Info(maxSubBSTHead, maxSubBSTSize, min, max);
}
八、给定一棵二叉树的头节点head,返回这颗二叉树中是不是完全二叉树
public static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int v) {
val = v;
}
}
public static boolean isCompleteTree1(TreeNode head) {
if (head == null) {
return true;
}
LinkedList<TreeNode> queue = new LinkedList<>();
// 是否遇到过左右两个孩子不双全的节点
boolean leaf = false;
TreeNode l = null;
TreeNode r = null;
queue.add(head);
while (!queue.isEmpty()) {
head = queue.poll();
l = head.left;
r = head.right;
if (
// 如果遇到了不双全的节点之后,又发现当前节点不是叶节点
(leaf && (l != null || r != null)) || (l == null && r != null)
) {
return false;
}
if (l != null) {
queue.add(l);
}
if (r != null) {
queue.add(r);
}
if (l == null || r == null) {
leaf = true;
}
}
return true;
}
方法二:
public static boolean isCompleteTree2(TreeNode head) {
return process(head).isCBT;
}
public static class Info {
public boolean isFull;
public boolean isCBT;
public int height;
public Info(boolean full, boolean cbt, int h) {
isFull = full;
isCBT = cbt;
height = h;
}
}
public static Info process(TreeNode x) {
if (x == null) {
return new Info(true, true, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isFull = leftInfo.isFull && rightInfo.isFull && leftInfo.height == rightInfo.height;
boolean isCBT = false;
if (leftInfo.isFull && rightInfo.isFull && leftInfo.height == rightInfo.height) {
isCBT = true;
} else if (leftInfo.isCBT && rightInfo.isFull && leftInfo.height == rightInfo.height + 1) {
isCBT = true;
} else if (leftInfo.isFull && rightInfo.isFull && leftInfo.height == rightInfo.height + 1) {
isCBT = true;
} else if (leftInfo.isFull && rightInfo.isCBT && leftInfo.height == rightInfo.height) {
isCBT = true;
}
return new Info(isFull, isCBT, height);
}
九、给定一棵二叉树的头节点head,和另外两个节点a和b。返回a和b的最低公共祖先
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static Node lowestAncestor1(Node head, Node o1, Node o2) {
if (head == null) {
return null;
}
// key的父节点是value
HashMap<Node, Node> parentMap = new HashMap<>();
parentMap.put(head, null);
fillParentMap(head, parentMap);
HashSet<Node> o1Set = new HashSet<>();
Node cur = o1;
o1Set.add(cur);
while (parentMap.get(cur) != null) {
cur = parentMap.get(cur);
o1Set.add(cur);
}
cur = o2;
while (!o1Set.contains(cur)) {
cur = parentMap.get(cur);
}
return cur;
}
public static void fillParentMap(Node head, HashMap<Node, Node> parentMap) {
if (head.left != null) {
parentMap.put(head.left, head);
fillParentMap(head.left, parentMap);
}
if (head.right != null) {
parentMap.put(head.right, head);
fillParentMap(head.right, parentMap);
}
}
方法二:
public static Node lowestAncestor2(Node head, Node a, Node b) {
return process(head, a, b).ans;
}
public static class Info {
public boolean findA;
public boolean findB;
public Node ans;
public Info(boolean fA, boolean fB, Node an) {
findA = fA;
findB = fB;
ans = an;
}
}
public static Info process(Node x, Node a, Node b) {
if (x == null) {
return new Info(false, false, null);
}
Info leftInfo = process(x.left, a, b);
Info rightInfo = process(x.right, a, b);
boolean findA = (x == a) || leftInfo.findA || rightInfo.findA;
boolean findB = (x == b) || leftInfo.findB || rightInfo.findB;
Node ans = null;
if (leftInfo.ans != null) {
ans = leftInfo.ans;
} else if (rightInfo.ans != null) {
ans = rightInfo.ans;
} else {
if (findA && findB) {
ans = x;
}
}
return new Info(findA, findB, ans);
}