量化交易入门阶段——MACD配合均值回归因子

本文测试了均值回归策略在股票市场中的表现,使用VWAP替代均线进行均值回归模型构建,结合MACD指标,结果显示该策略在特定时间段内的收益率达到34%,胜率为0.33,盈亏比为2.48。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

在昨天的文章《MACD配合探底回升因子测试(上)》之中,我讲到我看到的一篇研报《选股因子系列研究(十八)——价格形态选股因子》中提到了分析股票形态的时候,他们用了三种走势,分别是冲高回落、探底回升、均值回归,认为通过这三种特殊形态的分类,可以大幅提高传统分析方法的胜率。

昨天用的是第二种走势探底回升。今天回测最后一种因子,均价偏离。

他们给的定义挺有意思,让大家看看。

其中vwap代表每天股票的成交额/成交量计算得出的平均价,用这个平均价代替平时我们经常使用的均线,来做均值回归模型,这个思路还算有点意思。

 

我还是和昨天一样,还是使用最简单的MACD金叉死叉策略,先让大家回忆一下这个策略之前测试过的表现,我们看看2019.1.1-2019.12.31这段时间,如果交易沪深300的股票,那么取得什么样的收益呢?

仅仅是1.04%而已,少的可怜。

 

 

昨天我修改的探底回升的策略收益率是43%。

今天看看这个均值回归策略收益率是多少,大家猜猜?

 

34%,胜率0.33,盈亏比2.48,还算不错。

如果自己有策略,但是不会写代码的话,可以给我私信,价钱从几十到几百不等,看策略实现的难易程度而定,我使用的是聚宽平台,代码写好之后,可以在上面上模拟盘和实盘,对应的券商是第一创业证券。

<think>嗯,用户想让我介绍如何写一个简单的股票量化交易程序。首先,我需要理解用户的需求。他们可能对量化交易不太熟悉,所以需要从基础开始解释。我应该先明确量化交易的基本概念,然后分步骤说明如何构建一个简单的程序。 首先,量化交易程序通常包括数据获取、策略开发、回测和交易执行这几个部分。用户可能没有编程经验,所以我需要用简单的语言来解释,并且给出具体的例子。比如,用Python的话,可能需要用到pandas、numpy这些库,还有数据源如Tushare或者AKShare。 接下来,数据获取部分。需要解释如何安装必要的库,比如Tushare,然后获取股票数据。这里要注意数据的时间范围,比如最近一年的数据,还有数据频率,比如日线数据。然后展示一段代码示例,让用户能够复制粘贴运行,但也要提醒他们可能需要注册获取token。 然后是策略开发。用户可能对均线策略比较熟悉,所以选择双均线策略作为例子。需要解释如何计算短期和长期均线,比如5日和20日均线,然后生成交易信号。这里要提到如何用pandas计算rolling均值,以及生成买卖信号的逻辑,比如金叉和死叉。 回测部分需要计算策略收益,并与基准收益比较。这里需要展示如何计算每日收益率,累乘得到累计收益,并绘制图表。要注意提醒用户回测的局限性,比如未来函数、过拟合等问题,以及手续费的影响可能没有考虑。 最后是交易执行,但实际交易会更复杂,需要连接券商API,这里可以简单提及,并建议使用模拟交易环境先测试。同时,要强调风险,提醒用户量化交易的风险,建议先用模拟盘。 在代码部分,要确保语法正确,使用$...$和$$...$$格式,比如变量和公式用行内LaTeX,独立公式单独成段。例如,收益率计算部分可以用$每日收益率$,累计收益用乘积符号。同时,结构要清晰,分步骤说明,每个步骤的代码和解释对应。 可能用户的问题还包括如何验证策略的有效性,所以需要提到回测的结果分析,比如年化收益率、最大回撤等指标,但简单示例可能不涉及这些,可以建议进一步学习的方向。 需要检查是否有遗漏的部分,比如数据预处理(处理缺失值)、滑点、成交量等因素,但在简单程序中可能暂时忽略,保持示例的简洁性。同时,提醒用户实际应用中的复杂性和注意事项。 总结下来,回答的结构应该是:概述量化交易程序组成,分步骤讲解数据获取、策略开发、回测、执行,给出代码示例,并补充注意事项和进一步学习的建议。确保用中文,语言口语化,避免专业术语过多,必要时解释术语。</think>好的!以下是一个简单的股票量化交易程序实现思路和示例代码,分为数据获取、策略开发、回测验证三个核心步骤: --- ### 一、数据获取 使用Python的`tushare`库获取股票数据(需先注册获取API token): ```python import tushare as ts # 初始化接口 ts.set_token('你的token') pro = ts.pro_api() # 获取贵州茅台日线数据(示例) df = pro.daily(ts_code='600519.SH', start_date='20230101', end_date='20231231') df['trade_date'] = pd.to_datetime(df['trade_date']) df = df.set_index('trade_date').sort_index() ``` --- ### 二、策略开发:双均线策略 策略逻辑: - 当**短期均线(5日)**上穿**长期均线(20日)**时买入 - 当短期均线下穿长期均线时卖出 ```python # 计算均线 df['ma5'] = df['close'].rolling(window=5).mean() df['ma20'] = df['close'].rolling(window=20).mean() # 生成信号(1=买入,-1=卖出,0=持有) df['signal'] = 0 df.loc[df['ma5'] > df['ma20'], 'signal'] = 1 df.loc[df['ma5'] < df['ma20'], 'signal'] = -1 ``` --- ### 三、回测验证 计算策略收益并与基准(买入持有)对比: ```python # 计算每日收益率 df['return'] = df['close'].pct_change() df['strategy_return'] = df['signal'].shift(1) * df['return'] # 累计收益 cumulative_returns = (1 + df[['return', 'strategy_return']]).cumprod() # 绘制收益曲线 import matplotlib.pyplot as plt cumulative_returns.plot(figsize=(10,6)) plt.title('策略收益 vs 基准收益') plt.show() ``` --- ### 四、关键公式说明 1. **收益率计算**: $$ r_t = \frac{P_t - P_{t-1}}{P_{t-1}} $$ 2. **累计收益**: $$ \text{CumReturn} = \prod_{i=1}^{n}(1 + r_i) $$ --- ### 五、注意事项 1. **数据质量**:需处理缺失值和异常值 2. **过拟合风险**:避免在单一股票/时间段优化参数 3. **交易成本**:实际需扣除手续费(示例中未计算) 4. **进阶方向**: - 添加止损止盈机制 - 多因子策略(MACD、RSI等) - 使用`backtrader`等专业回测框架 --- ### 六、完整代码结构 ```python # 依赖库 import tushare as ts import pandas as pd import matplotlib.pyplot as plt # 数据获取 def get_data(): # ...(同上)... # 策略逻辑 def generate_signals(df): # ...(同上)... # 回测引擎 def backtest(df): # ...(同上)... # 主程序 if __name__ == "__main__": df = get_data() df = generate_signals(df) backtest(df) ``` --- 实际操作前建议: 1. 使用**模拟交易**测试策略 2. 增加**夏普比率**、**最大回撤**等风险评估指标 3. 学习《量化投资:以Python为工具》等专业书籍深入理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值