二叉树的非递归实现(先序、中序和后序非递归)

先序非递归

先序遍历的非递归过程为:
沿左子树深入时,入栈之前访问该结点,继续深入,为NULL时,则返回并弹出前面压入的节点,从该结点的右子树继续深入
如图所示:
在这里插入图片描述
代码实现:

void PreNotOrder(BTree root)
{
	if (root == NULL)
		exit(-1);
	stack myStack;
	StackInit(&myStack);//初始化栈
	BTree pmove = root;
	while (pmove != NULL || (!StackIsEmpty(&myStack)))//当根节点不为空且栈不满时
	{
		/*while (pmove != NULL)
		{
			printf("%c ", pmove->data);
			PushStack(&myStack, pmove);
			pmove = pmove->lchild;
		}
		if(!(StackIsEmpty(&myStack)))
		{
			pmove = GetStackTopValue(&myStack);
		    PopStack(&myStack);
			pmove = pmove->rchild;
		}*/
		if (pmove != NULL)//深入左子树
		{
			printf("%c ", pmove->data);//访问该结点
			PushStack(&myStack, pmove);//入栈
			pmove = pmove->lchild;//深入当前结点的左子树
		}
		else 
		{
			pmove = GetStackTopValue(&myStack);//取栈顶元素
			PopStack(&myStack);//栈顶元素出栈
			pmove = pmove->rchild;//深入右子树
		}
	}
}

中序非递归

而中序遍历的方法和先序遍历相似,只是访问结点的时机不同。
代码:

void InNotOrder(BTree root)
{
	if (root == NULL)
		exit(-1);
	stack myStack;
	StackInit(&myStack);
	BTree temp = root;
	while (temp != NULL || (!StackIsEmpty(&myStack)))
	{
		if (temp != NULL)
		{
			PushStack(&myStack, temp);
			temp = temp->lchild;
		}
		else
		{
			temp = GetStackTopValue(&myStack);
			printf("%c ", temp->data);
			PopStack(&myStack);
			temp = temp->rchild;
		}
	}
}

后序非递归

在这里插入图片描述
代码:

void PostNotOrder(BTree root)
{
	if (root == NULL)
		exit(-1);
	stack myStack;
	StackInit(&myStack);
	BTree temp = root;
	while (temp != NULL || (!StackIsEmpty(&myStack)))
	{
		if (temp != NULL)
		{
			PushStack(&myStack, temp);//入栈
			myStack.flag[myStack.top] = 1;//记录第几次访问根节点
			temp = temp->lchild;
		}
		else
		{
			if (myStack.flag[myStack.top] == 2)//第三次经过根节点时访问根节点并出栈
			{
				temp = GetStackTopValue(&myStack);
				printf("%c ", temp->data);
				PopStack(&myStack);
				temp = NULL;
			}
			else//左子树访问完,访问右子树
			{
				temp = GetStackTopValue(&myStack);
				myStack.flag[myStack.top] = 2;//第二次经过根节点
				temp = temp->rchild;
			}
		}
	}
}

完整代码

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <stdbool.h>
#include <Windows.h>

#define MAXSIZE 20
#define FLAG_MAXSIZE 30

typedef char DataType;

//二叉树结构体
typedef struct Tree
{
	DataType data;
	struct Tree* lchild, * rchild;
}Tree,*BTree;
//栈的结构体
typedef struct stack
{
	BTree data[MAXSIZE];
	int flag[FLAG_MAXSIZE];
	int top;//栈顶指针
}stack;
//初始化栈
void StackInit(stack* myStack)
{
	for (int i = 0; i < MAXSIZE; i++)
	{
		myStack->data[0];
	}
	for (int i = 0; i < FLAG_MAXSIZE; i++)
	{
		myStack->flag[i] = 0;
	}
	myStack->top = -1;
}
//入栈
void PushStack(stack* myStack, BTree data)
{
	if (myStack->top == MAXSIZE)
	{
		printf("栈满不能入栈!\n");
		exit(-1);
	}
	myStack->top++;
	myStack->data[myStack->top] = data;
}
//判断栈是否为空
bool StackIsEmpty(stack* myStack)
{
	if (myStack->top < 0)
		return true;
	else
		return false;
}
//出栈
void PopStack(stack* myStack)
{
	if (StackIsEmpty(myStack))
	{
		printf("栈已为空不能出栈!\n");
		exit(-1);
	}

	//myStack->data[myStack->top] = NULL;
	myStack->top--;

}
//取栈顶元素
BTree GetStackTopValue(stack* myStack)
{
	if (StackIsEmpty(myStack))
	{
		printf("栈已为空不能出栈!\n");
		exit(-1);
	}
	return myStack->data[myStack->top];
}

int flag = 0;
//创建二叉树
BTree CreateBTree()
{
	BTree root=NULL;
	DataType data;
	char temp = 0;
	if (flag == 0)
	{
		printf("请输入根节点:");
		flag = 1;
	}
	scanf_s("%c", &data, 1);
	temp = getchar();
	if (data == '#')
	{
		return NULL;
	}
	else
	{
		(BTree)root = (BTree)malloc(sizeof(Tree));
		if (root == NULL)
		{
			printf("分配内存失败!\n");
			exit(-1);
		}
		root->data = data;
		printf("请输入%c的左孩子:", root->data);
		root->lchild = CreateBTree();
		printf("请输入%c的右孩子:", root->data);
		root->rchild = CreateBTree();
	}
	return root;
}
//先序非递归遍历
void PreNotOrder(BTree root)
{
	if (root == NULL)
		exit(-1);
	stack myStack;
	StackInit(&myStack);//初始化栈
	BTree pmove = root;
	while (pmove != NULL || (!StackIsEmpty(&myStack)))//当根节点不为空且栈不满时
	{
		/*while (pmove != NULL)
		{
			printf("%c ", pmove->data);
			PushStack(&myStack, pmove);
			pmove = pmove->lchild;
		}
		if(!(StackIsEmpty(&myStack)))
		{
			pmove = GetStackTopValue(&myStack);
		    PopStack(&myStack);
			pmove = pmove->rchild;
		}*/
		if (pmove != NULL)//深入左子树
		{
			printf("%c ", pmove->data);//访问该结点
			PushStack(&myStack, pmove);//入栈
			pmove = pmove->lchild;//深入当前结点的左子树
		}
		else 
		{
			pmove = GetStackTopValue(&myStack);//取栈顶元素
			PopStack(&myStack);//栈顶元素出栈
			pmove = pmove->rchild;//深入右子树
		}
	}
}
//二叉树中序非递归遍历
void InNotOrder(BTree root)
{
	if (root == NULL)
		exit(-1);
	stack myStack;
	StackInit(&myStack);
	BTree temp = root;
	while (temp != NULL || (!StackIsEmpty(&myStack)))
	{
		if (temp != NULL)
		{
			PushStack(&myStack, temp);
			temp = temp->lchild;
		}
		else
		{
			temp = GetStackTopValue(&myStack);
			printf("%c ", temp->data);
			PopStack(&myStack);
			temp = temp->rchild;
		}
	}
}
//二叉树后序非递归遍历
void PostNotOrder(BTree root)
{
	if (root == NULL)
		exit(-1);
	stack myStack;
	StackInit(&myStack);
	BTree temp = root;
	while (temp != NULL || (!StackIsEmpty(&myStack)))
	{
		if (temp != NULL)
		{
			PushStack(&myStack, temp);//入栈
			myStack.flag[myStack.top] = 1;//记录第几次访问根节点
			temp = temp->lchild;
		}
		else
		{
			if (myStack.flag[myStack.top] == 2)//第三次经过根节点时访问根节点并出栈
			{
				temp = GetStackTopValue(&myStack);
				printf("%c ", temp->data);
				PopStack(&myStack);
				temp = NULL;
			}
			else//左子树访问完,访问右子树
			{
				temp = GetStackTopValue(&myStack);
				myStack.flag[myStack.top] = 2;//第二次经过根节点
				temp = temp->rchild;
			}
		}
	}
}
void test_Tree1()
{
	BTree root;
	root = CreateBTree();
	printf("先序非递归遍历的遍历序列为:");
	PreNotOrder(root);
	printf("\n");
	printf("中序非递归遍历的遍历序列为:");
	InNotOrder(root);
	printf("\n");
	printf("后序非递归遍历的遍历序列为:");
	PostNotOrder(root);
	printf("\n");
}

int main(void)
{
	test_Tree1();

	system("pause");
	return EXIT_SUCCESS;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值