线性回归
道上
这个作者很懒,什么都没留下…
展开
-
关于回归模型评价指标的总结
大家都知道,机器学习无非就是分类和回归,回归需要用到哪些评价指标呢,以及如何看这些评价指标?以下是对全网几篇文章部分的截取,由于文章较为分散,篇幅也不长,就不贴引用了,作者见谅。1.R Square介绍以及为什么好分类准确率,就是在01之间取值。但RMSE和MAE没有这样的性质,得到的误差。因此RMSE和MAE就有这样的局限性,比如我们在预测波士顿方差,RMSE值是4.9(万美元) 我们再去预测身高,可能得到的误差是10(厘米),我们不能说后者比前者更准确,因为二者的量纲根本就不是一类东西。其实这种局原创 2021-11-29 10:49:08 · 3810 阅读 · 0 评论 -
线性回归每次训练的结果都不一样
将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此分类器的性能指标。训练集与测试集按比例划分,这个划分选取是随机的,并不是每次将顺序打乱,很次训练结果不一样有些人可能认为是数据的顺序被打乱了,其实不是的。好处:处理简单,只需随机把原始数据分为两组即可坏处:但没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,得到的结果并不具有说服性。...原创 2021-11-24 15:55:45 · 2427 阅读 · 0 评论