深度学习:使用残差网络时出现ValueError: Operands could not be broadcast together with shapes (2985, 48) (2984, 48)

最近想使用残差网络去跑模型,看看能不能提升训练精度,但是在连接主路和辅路的时候

x1=keras.layers.add([x1,x2])

遇到错误:

ValueError: Operands could not be broadcast together with shapes (2985, 48) (2984, 48)

这个错误的意思就是主路输出的张量的shape和辅路输出的张量的shape不一致,所以无法结合,要保证主路和辅路的shape一致才可以实现结合。这里是2985和2984不一致,这是因为两层之间的卷积层没有设置padding参数,当我们在卷积层中加个

padding='same'

这样,就都变成2985了,第一维搞定
要第二维也一致,主路和辅路需要一个卷积核数量一致的卷积层。

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值