gmpy2常见函数使用

gmpy2常见函数使用

1.初始化大整数

import gmpy2
gmpy2.mpz(909090)

result:mpz(909090)

2.求大整数a,b的最大公因数

import gmpy2
gmpy2.gcd(6,18)

result:mpz(6)

3.求大整数x模m的逆元y

import gmpy2
#4*6 ≡ 1 mod 23
gmpy2.invert(4,23)

result:mpz(6)

4.检验大整数是否为偶数

import gmpy2
gmpy2.is_even(6)

result:True

-----------
import gmpy2
gmpy2.is_even(7)

result:False

5.检验大整数是否为奇数

import gmpy2
gmpy2.is_odd(6)

result:False

-----------
import gmpy2
gmpy2.is_odd(7)

result:True

6.检验大整数是否为素数

import gmpy2
gmpy2.is_prime(5)

result:True

7.求大整数x开n次根

import gmpy2
gmpy2.iroot(81,2)

result:(mpz(9),True)

8.求大整数x的y次幂模m取余

import gmpy2
#2^4 mod 5 
gmpy2.powmod(2,4,15)

result:mpz(1)
### gmpy2 库在 CTF 竞赛中的应用 #### 解析大数运算需求 CTF 中涉及密码学挑战时,经常遇到需要处理非常大的整数。Python 自带的大数支持虽然强大,但在某些情况下效率不够高。gmpy2 提供了更高效的多精度算术功能。 #### 安装与导入 为了使用 gmpy2 功能,在 Python 环境中需先安装该库: ```bash pip install gmpy2 ``` 接着可以在脚本顶部引入必要的模块: ```python import gmpy2 from gmpy2 import mpz, gcdext ``` #### 大整数操作优化 当面对 RSA 类型的题目时,频繁的操作如模幂、最大公约数等变得至关重要。gmpy2 改善了这些基础函数的速度性能[^1]。 #### 扩展欧几里得算法实现 扩展欧几里得算法用于求解线性丢番图方程 ax + by = c 或者找到两个数的最大公因数及其贝祖系数。这在许多基于同余关系的问题中有广泛应用。 ```python def extended_gcd(a, b): """Compute the greatest common divisor of a and b along with Bézout coefficients""" result = gcdext(mpz(a), mpz(b)) return int(result.g), int(result.s), int(result.t) ``` #### 中国剩余定理(CRT)加速解密过程 对于特定形式下的 RSA 加密方案,利用 CRT 可以显著加快私钥解密速度。下面是一个简化版的应用实例: ```python def crt(m1, m2, p, q): """Apply Chinese Remainder Theorem to compute message from two modular equations.""" _, qInv, _ = extended_gcd(q, p) m = (m1 + ((qInv * (m2 - m1)) % p) * q) % (p*q) return m ``` 此代码片段展示了如何通过已知条件快速恢复原始消息[^3]。 #### 高效素性测试 判断一个给定的大数是否为质数也是常见的任务之一。gmpy2 内置的概率素性检测器可以提供高效的支持。 ```python def is_prime(n): """Probabilistic test for primality using Miller-Rabin method within GMPY2 library.""" n_mpz = mpz(n) return bool(gmpy2.is_prime(n_mpz)) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值