问题描述
我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。
输入格式
一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)
输出格式
一行3位数字,表示:a除以b,小数后第n位开始的3位数字。
样例输入
1 8 1
样例输出
125
样例输入
1 8 3
样例输出
500
样例输入
282866 999000 6
样例输出
914
//#pragma GCC optimize(2)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
using namespace std;
long long book[1000000];
int main()
{
long long a,b,n,i=1,j,k,x=0,y=0,z=0;
int ans=0;
scanf("%lld%lld%lld",&a,&b,&n);
a=a%b;
while(a%b!=0&&i<n+3)
{
a*=10;
if(i==n)
x=a/b;
if(i==n+1)
y=a/b;
if(i==n+2)
z=a/b;
book[i]=a/b;
if(i>=3&&book[i]==book[i/3]&&book[i]==book[i/3*2])
{
j=i;k=i/3;z=i/3*2;
while(j>i/3*2&&book[j]==book[k]&&book[j]==book[z])
j--,k--,z--;
if(k==0)
{
ans=1;
break;
}
}
a=a%b;
i++;
}
if(ans==1)
{
i=i/3;
book[0]=book[i];
x=book[(int)n%i];
y=book[(int)(n+1)%i];
z=book[(int)(n+2)%i];
}
printf("%lld%lld%lld",x,y,z);
return 0;
}