蓝桥杯 历届试题 小数第n位

问题描述

  我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
  如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
  本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。

输入格式

  一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)

输出格式

  一行3位数字,表示:a除以b,小数后第n位开始的3位数字。

样例输入

1 8 1

样例输出

125

样例输入

1 8 3

样例输出

500

样例输入

282866 999000 6

样例输出

914

//#pragma GCC optimize(2)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
using namespace std;
long long book[1000000];
int main()
{
    long long a,b,n,i=1,j,k,x=0,y=0,z=0;
    int ans=0;
    scanf("%lld%lld%lld",&a,&b,&n);
    a=a%b;
    while(a%b!=0&&i<n+3)
    {
        a*=10;
        if(i==n)
            x=a/b;
        if(i==n+1)
            y=a/b;
        if(i==n+2)
            z=a/b;
        book[i]=a/b;
        if(i>=3&&book[i]==book[i/3]&&book[i]==book[i/3*2])
        {
            j=i;k=i/3;z=i/3*2;
            while(j>i/3*2&&book[j]==book[k]&&book[j]==book[z])
                j--,k--,z--;
            if(k==0)
            {
                ans=1;
                break;
            }
        }
        a=a%b;
        i++;
    }
    if(ans==1)
    {
        i=i/3;
        book[0]=book[i];
        x=book[(int)n%i];
        y=book[(int)(n+1)%i];
        z=book[(int)(n+2)%i];
    }
    printf("%lld%lld%lld",x,y,z);
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值