nlp
文章平均质量分 95
自然语言处理
2016bits
别催了,在学呢
展开
-
依存句法分析综述
看了斯坦福大学cs224依存分析的公开课后,对于依存分析仍是一脸茫然,所以查阅相关资料,对自然语言处理的依存分析这一方向做了一个简单的综述。笔者能力有限,如有错误,欢迎指正。参考:自然语言处理基础技术之依存分析基于深度学习的依存句法分析依存句法分析常宝宝. 基于深度学习的图解码依存分析研究进展[J]. 山西大学学报:自然科学版, 2017(3).石翠.依存句法分析研究综述[J].智能计算机与应用,2013,3(06):47-49.杨振鹏.依存句法分析方法综述[J].无线互联科技,原创 2021-05-19 19:25:33 · 3558 阅读 · 3 评论 -
GloVe: Global Vectors for Word Representation阅读总结
论文:GloVe: Global Vectors for Word Representation一、背景介绍之前介绍了词向量空间表示模型word2vec,该模型中的skip-gram模型在单词类比任务(analogy task)上表现较好,但是由于它是在单独的局部上下文窗口进行训练,而不是在全局共现计数上进行训练,所以对于语料库的统计信息利用不够...原创 2021-04-19 21:46:33 · 1034 阅读 · 2 评论 -
word2vec
一、前言目前刚开始看斯坦福大学的cs224自然语言处理课,看到word2vec,一些细节部分不是太懂,所以参考https://arxiv.org/pdf/1411.2738.pdf,对word2vec的相关内容做了一点总结,欢迎读者对写的不好的地方进行指正。二、模型提出背景及其核心思想在自然语言处理过程中,处理的基本单位是单词(word),以往的机器学习处理的都是数值型的数据,所以需要将单词转化为数值型变量。如果将所有单词进行统计,形成一个维度为单词总数的向量,对任一单词,该单词向量对应位置为1原创 2021-04-09 09:29:53 · 649 阅读 · 2 评论