- 博客(4)
- 收藏
- 关注
原创 FP16与INT8
AI计算中的两种数据格式FP16和INT8同为端侧AI计算深度学习模型中的常用数据格式,在不同的AI应用中具有独特优势什么是FP16呢?在计算机语言中,FP32表示单精度浮点数,相应的FP16就是半精度浮点数。与FP32相比,FP16的访存消耗仅为1/2,也因此FP16是更适合在移动终端侧进行AI计算的数据格式。相比INT8,FP16浮点计算在终端侧的体验优势非常明显,尤其在需要更高精度图像处理的场景,能够实现更高精度的“抠图”。如今,AI拍照、AI视频等已经成为人们记录生活的智慧助手,高精度带来
2021-10-02 22:54:07 8122
原创 全局池化层
全局池化层:global average pooling作用:替代全连接层,减少参数量,主要是用来解决全连接的问题,其主要是是将最后一层的特征图进行整张图的一个均值池化,形成一个特征点,将这些特征点组成最后的特征向量,进行softmax中进行计算。...
2021-10-02 22:45:14 2246
原创 torch.clamp()函数
torch.clamp()torch.clamp(input, min, max, out=None) → Tensor将输入input张量每个元素的夹紧到区间 [min,max][min,max],并返回结果到一个新张量。
2021-08-05 09:32:54 266
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人