- 博客(4)
- 收藏
- 关注
原创 关于天池赛中零基础入门推荐系统 - 新闻推荐Task04特征工程
文章目录前言一、实现步骤1.读取数据:训练和验证集的划分2.读取训练、验证及测试集:3.读取召回列表:4.读取各种Embedding:5.对训练数据做负采样:总结前言经过上三篇文章,接下来本文将是此次赛题中的核心内容之一,即特征工程。 | 打卡记录NO.4一、实现步骤1.读取数据:训练和验证集的划分划分训练和验证集的原因是为了在线下验证模型参数的好坏,为了完全模拟测试集,我们这里就在训练集中抽取部分用户的所有信息来作为验证集。提前做训练验证集划分的好处就是可以分解制作排序特征时的压力,一次.
2020-12-03 21:25:00 385
原创 关于天池赛中零基础入门推荐系统 - 新闻推荐Task03多路召回
文章目录前言一、关于多路召回什么是多路召回:二、实现步骤1.读取数据:1.1 debug模式:从训练集中划出一部分数据来调试代码1.2 线下验证模式:可以只使用训练集1.3 线上模式:应该讲测试集中的点击数据合并到总的数据中2.定义多路召回字典:3.计算相似性矩阵:3.1 itemcf i2i_sim:3.2 usercf u2u_sim:3.3 什么是召回:3.4 召回常用的策略:3.4.1 关于基于文章的召回:3.4.2 关于基于usercf召回:总结前言经过上两篇文章,接下来本文将是此次赛题中.
2020-11-30 19:25:12 702 1
原创 关于天池赛中零基础入门推荐系统 - 新闻推荐Task02数据分析
文章目录前言一、关于数据分析数据分析的目的:数据分析的作用:二、实现步骤1.引入库2.读取数据:3.数据预处理:4.数据浏览:4.1用户点击日志文件_训练集4.2测试集用户点击日志4.3新闻文章信息数据表4.4新闻文章embedding向量表示5.数据分析:5.1用户重复点击5.2用户点击环境变化分析5.3用户点击新闻数量的分布5.4新闻点击次数分析5.5两篇新闻连续出现的次数总结前言经过上一篇依据Datawhale的针对天池赛中零基础入门推荐系统 - 新闻推荐Task01的文章,接下来本文将对此次.
2020-11-27 20:35:31 641
原创 关于天池赛中零基础入门推荐系统 - 新闻推荐Task01赛题理解+Baseline
文章目录前言一、推荐系统是如何推荐的?二、用户画像是如何预测用户行为的?三、使用步骤1.引入库2.创建两个文件夹:3.压缩数据:4.分析我对一些代码片段的理解:总结前言在高速的网络、便捷的支付方式下,消费方式得到改进,网上购物也越来越流行。当你打开购物APP时,你是否有对它的推荐过程产生过疑惑,明明上一次只是随便搜了一下零食,而这一次打开,为你推荐了满屏零食,不得已,你又剁手了,真是又爱又恨呀。同样地,当我们打开新闻APP看过文章时,接下来APP将会为你推荐一堆跟你历史浏览文章题材及其相似的文章,.
2020-11-25 18:13:49 710 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人