数据结构实验之图论八:欧拉回路

数据结构实验之图论八:欧拉回路
Description
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。

能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?

Input
连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。
Output
若为欧拉图输出1,否则输出0。

#include<bits/stdc++.h>
using namespace std;
int mp[1100][1100];
int vis[1100];
int d[1100];//记录出度入度
int n,m,sum;
void dfs(int t)
{
    vis[t] = 1;
    sum++;//记录遍历时所经过的点的数目
    for(int i = 1;i<=n;i++)
    {
        if(!vis[i]&&mp[t][i])
        {
            dfs(i);
        }
    }
}
int main()
{
    int T,u,v;
    cin>>T;
    while(T--)
    {
        cin>>n>>m;
        memset(vis,0,sizeof(vis));
        memset(mp,0,sizeof(mp));
        memset(d,0,sizeof(d));
        while(m--)
        {
            cin>>u>>v;
            mp[u][v] = mp[v][u] = 1;
            d[u]++;
            d[v]++;
        }
        sum = 0;//注意sum为全局变量
        dfs(u);
        int k = 1;
        for(int i = 1;i<=n;i++)
        {
            if(d[i]%2!=0)
            {
                k = 0;
                break;
            }
        }
        if(k&&sum==n)//入度都为偶数且为连接图
            cout<<1<<endl;
        else
            cout<<0<<endl;
    }
    return 0;
}

//注:欧拉回路

//<无向图>
//定理1:无向图G是欧拉图当且仅当G是连通图,且G中没有奇度顶点。
//定理2:无向图G是半欧拉图当且仅当G是连通图,且G中恰有两个奇度顶点。

//<有向图>
//定理1:有向图D是欧拉图当且仅当D是强连通的且每个顶点的入度都等于出度。
//定理2:有向图D是半欧拉图当且仅当D是单向连通的,且D中恰有两个奇度顶点,其
//中一个入度比出度大1,另一个的出度比入度大1,而其余顶点的入度都等于
//出度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值