前言
最近做递归搜索做的来劲了,一开始碰到这个全排列输出问题还以为递归不好做,后来想了想还是能做,于是就利用递归过了这道题。
还是先放题目链接:P1706 全排列问题
解题思路:
初看题目,本质上是求数学上的全排列,也就是把
A
n
n
A_n^n
Ann按照它要的顺序打印出来。所以没啥卡思路的。但是就是这个如何打印是个问题。如果说,n是固定的,那么n重for循环就可以解决了,很轻松。但是这里n不固定,也就是说for循环重数不固定。我的解决方法还是递归搜索;题解区有位小伙伴很好的解答了我的问题,但是我自己却不是这样做得,也算是学到了吧。
这里递归搜索的话,其实也容易,我的思路就是,用两个数组,一个a[]记录从1到n的数字,另一个数组b[]初始化全部置为0.然后递归搜索,每次进入递归函数先判断b[]是否有0,有就说明还没排列完成,然后从a[]中从1到n的搜索,每一位是否已经被b[]包含,被b[]包含则跳过,否则将其加入b[]进行递归搜索;然后需要注意的就是数组传递进去是地址传递,因此递归过程中其内容会被改变,所以需要用一个临时数组temp[]在进入递归后先记录当前b[]状态,然后每次出去以后再把这个状态还给b[]。
给出我的AC代码:
#include <stdio.h>
#include <stdlib.h>
int is_have(int b[],int a,int n){
int i,have=0;
for(i=0;i<n;i++)
if(b[i]==a)
have=1;
return have;
}
void search(int a[],int b[],int n){
int i,j,k,able=1;
int temp[n];
for(i=0;i<n;i++)
temp[i]=b[i];
for(i=0;i<n;i++){
if(b[i]==0){
able=0;
break;
}
}
if(able){
for(i=0;i<n;i++)
printf("%5d",b[i]);
printf("\n");
return;
}
else{
for(j=0;j<n;j++){
if(!is_have(b,a[j],n)){
b[i]=a[j];
search(a,b,n);
for(k=0;k<n;k++)
b[k]=temp[k];
}
}
}
}
int main(int argc, char *argv[]) {
int i,j,k,n;
scanf("%d",&n);
int a[n],b[n];
for(i=0;i<n;i++){
a[i]=i+1;
b[i]=0;
}
search(a,b,n);
return 0;
}