题意
数轴上有 n (1<=n<=25000)个闭区间 [ai, bi],选择尽量少的区间覆盖一条指定线段 [1, t]( 1<=t<=1,000,000)。
覆盖整点,即(1,2)+(3,4)可以覆盖(1,4)。
不可能办到输出-1
输入
第一行:N和T
第二行至N+1行: 每一行一个闭区间。
输出
选择的区间的数目,不可能办到输出-1
思路
这题可以用贪心算法算法求解,首先我们将给定的区间按照左端点a从小到大排序,当左端点相同时按照右端点b降序。
之后我们初始化两个变量记录s、e分别记录这一次选择中的起始点和右端点,当区间左端点a小于等于s时我们可以看成这个区间是从s点开始的,所以,我们要做的就是选择左端点小于等于s,并且右端点b最大的那一个区间(选择最少区间贪心),将最大的右端点赋值给e表示我们此次可以覆盖到e点,之后s=e+1,在之后的过程中继续更新e,重复同样的的过程,直到e大于输入的值,注意,如果当在这一次循环中选择完毕区间后s还是大于e则不能覆盖。
总结
开始用的是vector存储区间,因为当时感觉如果某个区间右端点太小的话直接v.erase(v.begin())就行,更容易理解,但是提交时候发现tle,最后发现是删除后顺序改变,调用了多次sort,使复杂度过高,后来发现只要设置两个变量s、e来跟踪,不需要删除就可以。
代码
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct qu
{
int a,b;
};
bool cmp(qu m, qu n)
{
return m.a!=n.a?m.a<n.a:m.b>n.b;
}
qu in[25005];
int main()
{
int n,t;
cin>>n>>t;
for(int i=0;i<n;i++)
{
scanf("%d%d",&in[i].a,&in[i].b);
}
int s=0,e=0;
int cnt=0;
sort(in,in+n,cmp);
int cur=0;
while(e<t)
{
s=e+1;
for(int i=cur;i<n;i++)
{
if(in[i].a<=s)
{
if(e<in[i].b)
e=in[i].b;
}
else if(in[i].a>s)
{
cur=i;
break;
}
}
if(s>e)
{
cout<<-1<<endl;
return 0;
}
else
{
cnt++;
}
}
cout<<cnt<<endl;
}