逻辑回归

本文介绍了逻辑回归与线性回归的区别,深入探讨了逻辑回归的原理,包括sigmoid函数和损失函数。讨论了逻辑回归的分布式实现,包括按行并行和按列并行的方法。此外,文章还提到了正则化,如L1和L2正则,以及逻辑回归的评估指标,如查准率、查全率和ROC曲线。最后,通过代码实现了使用sklearn、梯度下降法和牛顿法进行逻辑回归的比较。
摘要由CSDN通过智能技术生成

逻辑回归与线性回归区别

线性回归多解决连续变量问题,在分类问题中效果不好

逻辑回归原理

对于分类模型常需要当为1的概率大于0.5时,判断为1,当为1的概率小于0.5时,判断为0。因概率的值域为 [0,1] ,这样的设定比线性回归合理很多。因此,常用函数sigmoid函数:
h ( z ) = 1 1 + e − z h(z) = \frac{1}{1+e^{-z}} h(z)=1+ez1
其中, z = θ T x z = \theta^T x z=θTx

损失函数

J ( θ ) = − 1 m l ( θ ) = − 1 m ∑ i = 1 m y ( i ) h θ ( x ( i ) ) + ( 1 − y ( i ) ) ( 1 − h θ ( x ( i ) ) ) J(\theta) = -\frac{1}{m}l(\theta) = -\frac{1}{m}\sum^{m}_{i=1} y^{(i)}h_\theta (x^{(i)}) + (1-y^{(i)})(1-h_\theta (x^{(i)})) J(θ)=m1l(θ)=m1i=1my(i)hθ(x(i))+(1y(i))(1hθ(x(i)))
假如和线性回归一样的平方损失函数,则损失函数的形式为 ∑ i = 1 m ( y ( i ) − 1 1 + e − θ T x ) 2 \sum^m_{i=1}(y^{(i)}-\frac{1}{1+e^{-\theta^T x}})^2 i=1m(y(i)1+eθTx1)2,此为非凸函数,求解复杂,且容易求得局部最优解为非全局最优解。

逻辑回归的分布式实现

由于单机处理能力的限制,在对大规模样本训练时,往往需要将求解过程并行化。我们知道在求解过程中,行和列都存在批向量处理的情况,我们可以按行并行和按列并行。

按行并行

∂ J ( θ ) ∂ θ i = 1 m ∑ i = 1 m ( y ( i ) − h θ ( x ( i ) ) ) x ( i ) \frac{\partial J(\theta)}{\partial \theta_i} =\frac{1}{m}\sum^m_{i=1}(y^{(i)} - h_\theta (x^{(i)}))x^{(i)} θi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值