Leetcode第739题--每日温度

本文介绍了一种基于每日气温列表预测未来气温上升趋势的算法。通过分析气温数据,算法能有效预测达到更高气温所需的最少天数,适用于天气预报等场景。

题目
请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。

例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。

提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数。

思路
受到排序算法的影响,将序列分为可分的和不可分的。

  1. 先固定第一个元素i,然后将后面的元素放在一个单独的列表中,判断这个列表中有无比前面的这个元素大的元素。
  2. 如果后面没有比前面的元素更大了,那么跳出本层的循环,此时i+1;如果有,那么后面进行判断。
  3. 构建一个计数器,如果前面的数比后面的数大,那么还没有到达符合要求的位置,计数器加一;如果前面的数往后数比第一个遇到的数要小,那么计数器加一后退出本轮循环。

在这里插入图片描述

class Solution:
    def dailyTemperatures(self, T: List[int]) -> List[int]:
        count_list=[]
        for i in range(len(T)):  #i相当于移动的指针
            count = 0
            a=sorted([T[k] for k in range(i,len(T))]) ##每轮将后面的位置放在一个列表中进行存储
            maxmium = a[-1]
            if T[i] == maxmium:
                count_list.append(count)
                continue      #如果后面没有比前面更大的了,count=0,continue是跳出本层循环,break是跳出全部循环
            for j in range(i+1,len(T)):
                if T[i] >= T[j]:
                    count +=1
                else:
                    count +=1
                    count_list.append(count)
                    break
        return count_list

但是这样运行的话时间复杂度是超时的,所以我们使用了栈的概念进行了操作(后面会加以解释)

class Solution:
    def dailyTemperatures(self, T: List[int]) -> List[int]:
        length = len(T)  # length of total days
        res = [0] * length
        stack = []
        
        for i in range(length):
            while stack and T[i] > T[stack[-1]]:  ###列表后面的数大于前面的数
                small = stack.pop()             ##将前面的索引弹出
                print(small)
                res[small] = i - small  ####前面的索引 
                
            stack.append(i)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值