- 博客(6)
- 收藏
- 关注
转载 神经网络
目录: 1、神经元模型 2、神经元结构 1、神经元模型 神经元模型的使用可以这样理解: (1)我们有一个数据,称之为样本。样本有四个属性,其中三个属性已知,一个属性未知。我们需要做的就是通过三个已知属性预测未知属性。 (2)具体办法就是使用神经元的公式进行计算。三个已知属性的值是a1,a2,a3,未知属性的值是z。z可以通过公式计算出来。 (3)这里,已知的属性称之为特征,未知的属性称之为...
2019-04-06 17:47:03
345
原创 决策树
1、特点 (1)非参数学习算法 (2)可以解决分类问题 (3)天然可以解决多分类问题 (4)也可以解决回归问题 (5)非常好的可解释性 2、如何构建决策树:信息熵 (1)熵:在信息论中代表随机变量不确定度的度量。 (2)熵越大,数据的不确定性越高;熵越小,数据的不确定性越低。 (3)信息熵: 3、信息增益(ID3):代表了在一个条件下,信息不确定性减少的程度。 4、信息增益率(C4.5):代表了...
2019-04-06 17:20:29
152
原创 K近邻算法
1、特点 (1)思想极度简单 (2)应用数学知识少 (3)效果好 (4)可以解释机器学习算法使用过程中的很多细节问题 (5)更完整的刻画机器学习应用的流程 2、欧拉距离: 曼哈顿距离: 明可夫斯基距离(p是一个超参数): 3、 (1)K近邻算法是非常特殊的,可以被认为是没有模型的算法。 (2)为了和其他算法统一,可以认为训练数据集就是模型本身。 4、分类的准确度:accuracy 5、 (1...
2019-04-06 16:42:19
170
原创 逻辑回归算法
一、逻辑回归算法 1、逻辑回归模型 (1)逻辑回归既可以看做是回归算法,也可以看做是分类算法,通常作为分类算法使用,只可以解决分类问题。 (2) 模型: (2)Sigmoid函数:值域(0,1);t=0时,p=0.5 在这里插入代码片 代码 import numpy as np import matplotlib.pyplot as plt def sigmoid(t): return...
2019-04-06 16:30:55
275
原创 线性回归算法(涉及最小二乘法、梯度下降法)
一、简单线性回归算法 1、优点: (1)解决回归问题 (2)思想简单,实现容易 (3)许多强大的非线性模型的基础 (4)结果具有很好的可解释性 (5)蕴含机器学习中的很多重要思想 2、什么是线性回归 (1)寻找一条直线,最大程度地拟合样本特征和样本输出标记之间的关系 (2)样本特征只有一个称为简单线性回归 (3)样本特征有多个称为多元线性回归 3、目标 (1)真值: (2)预测值: (3)目标...
2019-03-30 10:30:24
1241
原创 《深入浅出数据分析》读书笔记
寒假看了一本数据分析的启蒙书籍叫《深入浅出数据分析》,这本书插图很多,主要是通过举实际例子来介绍数据分析的各种方法,非常通俗易懂。下面分享当时的读书笔记(内容不多,觉得重要的才记下来~)。 第一章 数据分析引言:分解数据 1、数据分析的固定基本流程: 确定—>分解—>评估—>决策 确定:第一步是了解问题(从你的客户了解)再确定问题。 分解:分解问题和数据使其成为更小的组...
2019-02-19 23:57:37
1151
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人