题目
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点
使用差分约束系统的解法解决这道题
Input
输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。
Ouput
输出一个整数表示最少选取的点的个数
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Ouput
6
思路
使用差分约束。
构造不等式:
- 记sum[i]表示数轴上[0,i]之间选点的个数,则对于第i个区间[ai,bi]需要满足sum[bi]-sum[ai-1]>=ci,其中ci为该区间内至少要有几个点;
- 为保证sum有意义,还需要满足不等式0<=sum[i]-sum[i-1]<=1,即在区间(i,i+1]中至多有1个点。
将上述不等式组统一格式:
- sum[bi+1]-sum[ai]>=ci
- sum[i]-sum[i-1]>=0
- sum[i-1]-sum[i]>=-1
求该差分系统的最小解,转换为>=不等式组跑最长路,答案为sum[max{bi}]。
差分约束
代码
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int inf=1e9;
int n,tot=0,head[100000],cnt[100000],dis[100000];
bool inq[100000];
struct Edge{
int to,w,next;
}e[1000000];
void add(int x,int y,int z){
e[++tot].to=y;
e[tot].w=z;
e[tot].next=head[x];
head[x]=tot;
}
queue<int> q;
void spfa(int s){
for(int i=0;i<100000;i++){
dis[i]=-1;
inq[i]=false;
}
dis[s]=0;
inq[s]=true;
q.push(s);
while(!q.empty()){
int x=q.front();q.pop();
inq[x]=false;
for(int i=head[x];i!=-1;i=e[i].next){
int y=e[i].to,w=e[i].w;
if(dis[y]<dis[x]+w){
dis[y]=dis[x]+w;
if(!inq[y]){
q.push(y);
inq[y]=true;
}
}
}
}
}
int main(){
scanf("%d",&n);
int left=100000,right=0;
for(int i=0;i<100000;i++)
head[i]=-1;
for(int i=0;i<n;i++){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
left=min(left,x);
right=max(right,y+1);
add(x, y+1, w);
}
for(int i=left;i<=right;i++){
add(i,i-1,-1);
add(i-1,i,0);
}
spfa(left);
printf("%d",dis[right]);
return 0;
}
总结
这道题在重测的时候变成了re,发现是spfa()里写成了
for(int i=0;i<=100000;i++){//应为<
dis[i]=-1;
inq[i]=false;
}