程序设计思维 week8 作业A-区间选点 II

题目

给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点
使用差分约束系统的解法解决这道题

Input

输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。

Ouput

输出一个整数表示最少选取的点的个数

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Ouput

6

思路

使用差分约束
构造不等式:

  • 记sum[i]表示数轴上[0,i]之间选点的个数,则对于第i个区间[ai,bi]需要满足sum[bi]-sum[ai-1]>=ci,其中ci为该区间内至少要有几个点;
  • 为保证sum有意义,还需要满足不等式0<=sum[i]-sum[i-1]<=1,即在区间(i,i+1]中至多有1个点。

将上述不等式组统一格式:

  • sum[bi+1]-sum[ai]>=ci
  • sum[i]-sum[i-1]>=0
  • sum[i-1]-sum[i]>=-1

求该差分系统的最小解,转换为>=不等式组跑最长路,答案为sum[max{bi}]

差分约束

差分约束

代码

#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int inf=1e9;
int n,tot=0,head[100000],cnt[100000],dis[100000];
bool inq[100000];
struct Edge{
    int to,w,next;
}e[1000000];

void add(int x,int y,int z){
    e[++tot].to=y;
    e[tot].w=z;
    e[tot].next=head[x];
    head[x]=tot;
}

queue<int> q;
void spfa(int s){
    for(int i=0;i<100000;i++){
        dis[i]=-1;
        inq[i]=false;
    }
    dis[s]=0;
    inq[s]=true;
    q.push(s);
    while(!q.empty()){
        int x=q.front();q.pop();
        inq[x]=false;
        for(int i=head[x];i!=-1;i=e[i].next){
            int y=e[i].to,w=e[i].w;
            if(dis[y]<dis[x]+w){
                dis[y]=dis[x]+w;
                if(!inq[y]){
                    q.push(y);
                    inq[y]=true;
                }
            }
        }
    }
}

int main(){
    scanf("%d",&n);
    int left=100000,right=0;
    for(int i=0;i<100000;i++)
        head[i]=-1;
    for(int i=0;i<n;i++){
        int x,y,w;
        scanf("%d%d%d",&x,&y,&w);
        left=min(left,x);
        right=max(right,y+1);
        add(x, y+1, w);
    }
    for(int i=left;i<=right;i++){
        add(i,i-1,-1);
        add(i-1,i,0);
    }
    spfa(left);
    printf("%d",dis[right]);
    return 0;
}

总结

这道题在重测的时候变成了re,发现是spfa()里写成了

for(int i=0;i<=100000;i++){//应为<
    dis[i]=-1;
    inq[i]=false;
}

题目链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值