题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入输出格式
输入格式:
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式:
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入样例#1:
2009
输出样例#1:
3 3 2003
解题思路:穷举加循环判断是不是素数?感觉时间要爆。
换个好用的,线筛一遍再判断岂不妙哉。
#include<iostream>
#include<cstdio>
using namespace std;
int n,num[10000005],cnt;
bool vis[10000005];
void ol()
{
vis[1] = 1;
for(int i = 2;i <= n;i ++)
{
if(vis[i]==0)
num[++cnt] = i;
for(int j = 1;j <= cnt && num[j]*i <= n;j ++)
{
vis[num[j]*i] = 1;
if(i % num[j] == 0)
break;
}
}
}
int main()
{
scanf("%d",&n);
ol();
for(int e=2;e<n;e++)
{
for(int d=2;d<n-2;d++)
{
if(vis[d]==0&&vis[e]==0&&vis[n-d-e]==0)
{
printf("%d %d %d\n",e,d,n-d-e);
return 0;
}
}
}
return 0;
}
制作人:王天硕