树的直径模板(dfs)(bfs)

POJ - 3310
Caterpillar
An undirected graph is called a caterpillar if it is connected, has no cycles, and there is a path in the graph where every node is either on this path or a neighbor of a node on the path. This path is called the spine of the caterpillar and the spine may not be unique. You are simply going to check graphs to see if they are caterpillars.

For example, the left graph below is not a caterpillar, but the right graph is. One possible spine is
shown by dots.

Input
There will be multiple test cases. Each test case starts with a line containing n indicating the number of nodes, numbered 1 through n (a value of n = 0 indicates end-of-input). The next line will contain an integer e indicating the number of edges. Starting on the following line will be e pairs n1 n2 indicating an undirected edge between nodes n1 and n1. This information may span multiple lines. You may assume that n ≤ 100 and e ≤ 300. Do not assume that the graphs in the test cases are connected or acyclic.

Output
For each test case generate one line of output. This line should either be

Graph g is a caterpillar. 

or
Graph g is not a caterpillar.
as appropriate, where g is the number of the graph, starting at 1.

Sample Input
22
21
1 2 2 3 2 4 2 5 2 6 6 7 6 10 10 8 9 10 10 12 11 12 12 13 12 17
18 17 15 17 15 14 16 15 17 20 20 21 20 22 20 19
16
15
1 2 2 3 5 2 4 2 2 6 6 7 6 8 6 9 9 10 10 12 10 11 10 14 10 13 13 16 13 15
0
Sample Output
Graph 1 is not a caterpillar.
Graph 2 is a caterpillar.

#include<iostream>
#include<stdio.h>
#include<map>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
int n,m,maxid,maxn;
vector<int> G[10009];
int f[10009];int d[10009];
int vis[10009];int path[10009];
int book[10009];int du[10009];

void dfs(int x){
   
	for(int i=0;i<G[x].size();i++){
   
		int u=G[x][i];
		if(vis[u]==1) continue;
		vis[u]=1;
		if(d[u]<d[x]+1){
   

			d[u]=d[x]+1;
			if(maxn<d[u]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值