HDU3342(Legal or Not)

题目传送门

在这里插入图片描述

思路

这题比较简单一个裸的拓扑排序模板题,只要有拓扑序生成关系就一定正确。

#include <iostream>
#include <cstring>
#include <queue>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 105;
struct edge{
	int to;
	int next;
}e[maxn];
int head[maxn];
int s[maxn];
int cnt,n,m;
queue<int>q;
void clear_set()
{
	cnt = 0;
	memset(head,-1,sizeof(head));
	memset(s,0,sizeof(s));
	while(!q.empty())	q.pop();
}
void addedge(int x,int y)
{
	e[cnt].to = y;
	e[cnt].next = head[x];
	head[x] = cnt++;
}
void topsort()
{
	for(int i = 0;i < n;i++){
		if(s[i] == 0){
			q.push(i);
		}
	}
	int k = 0;
	while(!q.empty()){
		int p = q.front();
		k++;
		q.pop();
		for(int i = head[p];~i;i = e[i].next){
			edge t = e[i];
			if(--s[t.to] == 0){
				q.push(t.to);
				s[t.to] = -1; 
			}
		}
	}
	if(k == n){
		printf("YES\n");
	}
	else{
		printf("NO\n"); 
	}
}
int main()
{
	while(~scanf("%d%d",&n,&m)){
		if(n + m == 0){
			break;
		}
		clear_set();
		while(m--){
			int x,y;
			scanf("%d%d",&x,&y);
			addedge(x,y);s[y]++;
		}
		topsort();
	}
	return 0;
}

愿你走出半生,归来仍是少年~

### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值