HDU2586(How far away)

How far away

题目传送门
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this “How far is it if I want to go from house A to house B”? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path(“simple” means you can’t visit a place twice) between every two houses. Yout task is to answer all these curious people.

Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.

Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.

Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3

2 2
1 2 100
1 2
2 1

Sample Output
10
25
100
100

题意

勇气小镇是一个有着n个房屋的小镇,为什么把它叫做勇气小镇呢,这个故事就要从勇气小镇成立的那天说起了,修建小镇的时候,为了让小镇有特色,镇长特地只修了n-1条路,并且规定说所有在勇气小镇的村民,每一次出门必须规划好路线,路线必须满足在到达终点之前绝对不走回头路。每个人都要这样,不然那个人就不配在小镇生活下去,因为他没有这个勇气。事实上,这并不能算一项挑战,因为n-1条路已经连通了每户人家,不回头地从起点到终点,只是一个时间上的问题。由于小镇上的福利特别好,所以小懒入住了这个小镇,他规划了m次的行程,每次从L房屋到R房屋,他想问你他每次从L房屋到R房屋需要走多远的路。

思路

题目给的是图看起来向一颗无向树,然后有m次询问每次问这两点的距离是多少。看起来好像可能做最短路,但是点太多了。复杂度都比较高,所以不能这么做,正确做法是树上差分。

  1. dfs深度遍历每个节点,记录每个节点的深度,特殊父节点,以及从根节点到达当前节点的距离
  2. 预处理维护完三个重要参数之后,对每次的查询找到两点的LCA。
  3. 现在问题就转化简单了,x,y两点的距离就转化为 x -> root + y -> root - 2*LCA - >root的距离
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <stack>
using namespace std;
const int maxn = 40005;
const int maxd = 20;
struct edge{
	int from;
	int to;
	int w;
	int next;
}e[maxn];
int dist[maxn];				//记录当前节点到根节点的距离
int f[maxn][maxd];			//预处理表
int head[maxn];				
int dep[maxn];				//节点深度
int in[maxn];				//节点入度,为了找到根
int tot;
void addedge(int x,int y,int z)
{
	e[tot].from = x;
	e[tot].to = y;
	e[tot].w = z;
	e[tot].next = head[x];
	head[x] = tot++;
}
void clear_set()
{
	tot = 0;
	memset(dist,0,sizeof(dist));
	memset(head,-1,sizeof(head));
	memset(f,0,sizeof(f));
	memset(dep,0,sizeof(dep));
	memset(in,0,sizeof(in));
}
void dfs(int x,int fx)
{
	dep[x] = dep[fx] + 1;
	f[x][0] = fx;
	for(int i = 1;i < maxd;i++){
		f[x][i] = f[f[x][i-1]][i-1];
	}	
	for(int i = head[x];~i;i = e[i].next){
		int y = e[i].to;
		dist[y] = dist[x] + e[i].w;
		dfs(y,x);
	}
}
int LCA(int x,int y)
{
	if(dep[x] < dep[y])		swap(x,y);
	int d = dep[x] - dep[y];
	for(int i = 0;i < maxd;i++){
		if(((1<<i)&d)){
			x = f[x][i];
		}
	}
	if(x == y)		return x;
	for(int i = maxd-1;i >= 0;i--){
		if(f[x][i] != f[y][i]){
			x = f[x][i];
			y = f[y][i];
		}
	}
	return f[x][0];
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		clear_set();
		int n,m;
		scanf("%d%d",&n,&m);
		int x,y,z;
		for(int i = 0;i < n-1;i++){
			scanf("%d%d%d",&x,&y,&z);
			addedge(x,y,z);
			in[y]++;
		}
		int rt = 0;
		for(int i = 1;i <= n;i++){
			if(in[i] == 0){
				rt = i;
				break;
			}
		}
		dfs(rt,0);
		while(m--){
			scanf("%d%d",&x,&y);
			int t = LCA(x,y);
			int ans = dist[x] + dist[y] - 2*dist[t];
			printf("%d\n",ans); 
		}
	}
	return 0;
} 

愿你走出半生,归来仍是少年~

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读